Анализ эффективности проведения гидравлического разрыва пласта на Ельниковском месторождении
Таблица 11
Конструкция скважин
Скважи-на
|
э/колонна
|
Забой
|
Перфорация
|
|
|
Ф, мм
|
Толщи-на стенок, мм
|
Исскуствен-ный, м
|
Теку-щий, м
|
Дата
|
Интервал
|
Тип перфора-тора
|
Плот-ность
|
|
4006
|
146
|
8
|
1360
|
1358
|
1991
|
1278-1279,8; 1280,4-1282,4; 1283,6-1286
|
ПК-105
|
10
|
|
4025
|
146
|
8
|
1480
|
1480
|
1988
|
1377,4-1378,8; 1380,2-1381,4; 1383-1385,6; 1389-1391,6; 1393-1396
|
ПК-105
|
10
|
|
2806
|
146
|
8
|
1510
|
1500
|
1990
|
1436.4-1438.0; 1438.8-1440.4; 1444.4-1450.4
|
ПК-105
|
10
|
|
4002
|
146
|
8
|
1520
|
1490
|
1985
|
1451.2-1452.8; 1459.4-1461.2; 1462.0-1464.2; 1468.0-1472.0
|
ПК-105
|
10
|
|
2805
|
146
|
7
|
1488
|
1485
|
1987
|
1418.8-1420.4; 1422-1423.2; 1428-1431.6
|
ПК-105
|
10
|
|
2792
|
146
|
8
|
1521
|
1515
|
1990
|
1423.2-1424.4; 1428.0-1429.2; 1436.4-1438.4; 1445.6-1447.2; 1449.0-1451.6
|
ПК-105
|
10
|
|
2758
|
146
|
8
|
1430
|
1420
|
1991
|
1346.8-1348.0; 1349.0-1350.0; 1352.4-1361.0; 1380.8-1384.0
|
ПК-105
|
10
|
|
2814
|
146
|
7
|
1468
|
1460
|
1986
|
1403.0-1405.2; 1412.2-1413.8; 1418.4-1422.8
|
ПК-105
|
10
|
|
3786
|
146
|
8
|
1503
|
1500
|
1988
|
1442.8-1445.2; 1453.0-1454.0; 1455.2-1457.6
|
ПК-105
|
10
|
|
2817
|
146
|
8
|
1500
|
1500
|
1987
|
1430.8-1433.0; 1435.0-1436.0; 1437.0-1438.0; 1440.8-1446.0
|
ПК-105
|
10
|
|
|
Таблица 12
Физико-химические свойства по скважинам-кандидатам.
Скважина
|
Рпл, атм
|
Рзаб, атм
|
Рнас, атм
|
Вязкость, мПа·с
|
Объемный коэффициент
|
Скин-фактор
|
Нэф, м
|
Проницаемость, мД
|
Плотно-сть нефти. пов.усл., т/м?
|
|
4006
|
111
|
50
|
65
|
20,87
|
1,028
|
25,148
|
5,2
|
100
|
0,889
|
|
4025
|
124
|
48
|
62
|
21,30
|
1,100
|
23,146
|
10,0
|
87
|
0,889
|
|
2806
|
124
|
50
|
66
|
20,01
|
1,056
|
25,147
|
7,4
|
97
|
0,889
|
|
4002
|
138
|
52
|
68
|
20,90
|
1,080
|
24,657
|
22,2
|
81
|
0,889
|
|
2805
|
135
|
54
|
63
|
21,80
|
1,102
|
26,822
|
6,6
|
86
|
0,889
|
|
2792
|
125
|
51
|
62
|
21,89
|
1,112
|
25,444
|
10,0
|
79
|
0,889
|
|
2758
|
127
|
47
|
61
|
22,34
|
1,038
|
20,176
|
9,0
|
96
|
0,889
|
|
2814
|
127
|
31
|
65
|
20,08
|
1,097
|
26,688
|
6,6
|
100
|
0,889
|
|
3786
|
123
|
52
|
65
|
20,84
|
1,112
|
26,442
|
9,8
|
94
|
0,889
|
|
2817
|
135
|
54
|
66
|
23,41
|
1,084
|
25,233
|
12,0
|
83
|
0,889
|
|
|
2.5.3. Технология проведения гидравлического разрыва пласта
1) Геологической службой управления составляется информация установленной формы для расчета ГРП.
2) Составляется программа проведения ГРП по результатам расчета на ЭВМ.
3) На территории скважины подготавливается площадка для размещения оборудования и агрегатов по ГРП.
4) Устанавливается специальное устьевое оборудование на скважине.
5) Мастер КРС передает скважину ответственному по ГРП соответственно акта для проведения ГРП установленной формы.
6) Размещение агрегата и оборудования производится инженером ГРП согласно приложенной схеме.
7) Проводится испытание на герметичность устьевого оборудования, манифольдов и соединений нагнетательных линий от агрегатов к скважине под давлением 700 атм. в течении 10 мин.
8) При установлении герметичности соединений в скважину подается чистая загеленная жидкость разрыва для осуществления ГРП. Свидетельством достижения разрыва является увеличение приемистости скважины по диаграмме на компьютере.
9) После достижения разрыва в скважину, согласно программе, нагнетается от 10 до 40 м3 чистой загеленной жидкости разрыва.
10) За жидкостью разрыва производится закачка загеленной жидкости с подачей расчетной дозы проппанта от 100 до 900 кг/м3 до определенной стадии объема закачки по намеченной программе при давлениях до 450 атм. Для закрепления трещин закачивается 4-30 т проппанта.
11) Непосредственно за смесью проппанта и жидкости закачивается жидкость продавки в объеме до кровли пласта. Управление процессом ГРП осуществляется с пульта управления и по радиосвязи.
12) Темп нагнетания жидкости выдерживается расчетный, в пределах 3-7 м3/мин. в зависимости от геолого-промысловых данных пласта.
13) Скважина оставляется на распад геля, на 24 часа под остаточным давлением, с регистрацией изменения давления в виде графика на ЭВМ.
14) В процессе ГРП ведется непрерывная регистрация следующих параметров: давления нагнетания, темпа закачки, затрубного давления, количества пропанта, плотности жидкости, количества химреагентов. Регистрация параметров ведется одновременно в виде графика на экране ЭВМ, записи в памяти ЭВМ, записи на дискету, распечатки на принтере и записи в таблицу данных. Выдача документации по ГРП с ЭВМ производится в форме: сводки ГРП, графиков изменения параметров в процессе ГРП, графика изменения остаточного давления после ГРП. /4/.
Гидравлический разрыв пласта - в скважине, выбранной для ГРП, определяется дебит (приемистость), забойное и пластовое давление, содержание воды в добываемой продукции и газовый фактор. Осуществляются мероприятия по очистке забоя и ПЗП.
Хорошие результаты дает предварительная перфорация в узком интервале пласта, намеченном для ГРП. Для этих целей применяется кумулятивную или гидропескоструйную перфорацию. Такие мероприятия снижают давление разрыва и повышают его эффективность.
Проверяется герметичность эксплуатационной колонны и цементного кольца. Спускают НКТ (как можно большего диаметра для уменьшения потерь давления) с пакером и якорем. Пакер устанавливается на 5-10м выше разрываемого пласта против плотных непроницаемых пород (глина, аргиллит, алевролит). Ниже пакера устанавливаются НКТ (хвостовик). Длину хвостовика выбирают максимальной возможной для того, чтобы песок двигался к трещине и не выпадал в зумпф скважины.
Промывают и заполняют скважину до устья собственной дегазированной нефтью в нефтяных добывающих и нагнетаемой водой - в нагнетательных скважинах. После посадки пакера, опрессовку его производят путем закачки нефти или воды в НКТ при открытом затрубном пространстве. При обнаружении пропусков в пакере его срывают и производят повторную посадку и опрессовку. Если и в этом случае не достигается герметичность пакера, то его заменяют или изменяют место посадки.
Оборудование, необходимое для ГРП, расставляется персоналом бригады ГРП на площадке перед скважиной согласно технологической схемы, производится обвязка оборудования трубопроводами (для низкого давления мягкими рукавами, для высокого давления - стальными трубами) между собой, емкостями и скважиной. После закрепления всех трубопроводов производится их опрессовка на давление ожидаемое рабочее плюс коэффициент запаса, зависящий от величины ожидаемого рабочего (например, при ожидаемом рабочем давлении более 650 атм, коэффициент запаса будет равен 1,25). Производится приготовление рабочей жидкости разрыва путем перемешивания технологической жидкости, находящейся в емкостях, с химическими реагентами, повышающими вязкость. Продолжительность подготовки жидкости разрыва зависит от ее объема, качества и температуры. /7/
Процесс ГРП начинается с закачки жидкости разрыва в скважину с расходами и давлением, соответствующим рабочему проекту. Разрыв пласта отмечается падением давления закачки и увеличением приемистости скважины
Давление ГРП на забое скважины Рз определяется по формуле:
Рз=Рг+Бр, (2.1.)
где: Бр - предел прочности пород продуктивного пласта на разрыв, МПа;
Рг - величина горного давления, определяется по формуле:
Рг=Н*р*10(ехр-5), (2.2)
где: Н - глубина обрабатываемого пласта, м;
р - плотность пород, слагающих разрез скважины, кг/м3.
Давление ГРП на устье скважины Ру определяется по формуле:
Ру=Рг+Бр+Ртр- Рпл , (2.3)
где: Ртр - потери давления из-за трения жидкости в трубах, МПа;
Рпл - пластовое давление, МПа.
После разрыва пласта для увеличения приемистости скважины увеличивают расход жидкости и поднимают давление разрыва. При получении величины трещины, соответствующей проектной, начинается закачка расклинивающего материала в трещину для ее закрепления. Эта стадия проходит при максимальных давлениях и производительности для обеспечения максимального раскрытия созданных трещин. .
Непосредственно после закачки расклинивающего материала без снижения темпов производится его продавка в пласт чистой жидкостью в объеме, равном объему труб; затем останавливаются все агрегаты, закрывается устьевая задвижка и скважина не менее суток находится на распределении давления и распаде геля.
Во время процесса ГРП в затрубном пространстве скважины поддерживается давление от 80 до 130 МПа с целью уменьшения перепада давления на НКТ и пакер.
Все параметры ГРП (давление на насосных агрегатах, мгновенные и накопленные расходы жидкости и закрепляющего материала, давление в затрубном пространстве, суммарный расход жидкости, плотность смеси) выводятся на станцию контроля и управления процессом и регистрируются в памяти компьютеров. В процессе ГРП используется следующая техника: специальные насосные агрегаты высокого давления; смеситель(блендер); стан-ция контроля и управления процессом; песковоз; пожарный автомобиль; блок манифольдов; автомобиль для перевозки химреагентов; вакуумная установка.
Схема расстановки наземного оборудования при производстве ГРП
Рис. 11
Схема расположения подземного оборудования
при проведении ГРП на примере скважины 4006.
Рис. 12
2.5.4. Проведение перфорации
При проведении скважинных работ важно не допустить закупорки пер-форационных отверстий. Все операции, которые могут привести к осыпям (цементирование, установка песчаных заглушек, проработка скребком и др.) должны проводиться до перфорирования. Затем жидкости в скважине вытес-няются чистыми жидкостями. Эта операция также проводится до перфориро-вания.
За исключением случаев ограниченной перфорации, ПВР на скважине должно выполняться таким образом, чтобы минимизировать: давления тре-ния в пристволье и риск преждевременного «Стопа» при закачке ГРП, паде-ние давления в призабойной зоне и вынос проппанта при эксплуатации, а также, чтобы обеспечить хорошее перекрытие продуктивной зоны, избежав в то же время контакта трещины с зонами нежелательных флюидов.
Важно, чтобы диаметр перфорационных отверстий соответствовал раз-меру проппанта. Во многих случаях, особенно при осадконакоплениях, реко-мендуется повторное перфорирование до начала ГРП. В отсутствие надеж-ной информации в целях безопасности скважины рекомендуется ПВР с плот-ностью 20 отв/м, фазированием 60 град., с входным диаметром отверстий 12мм.
Длина интервала перфорации может оказать влияние на трещину. Для вертикальных скважин ограничение по интервалу перфорации 15-30 метров. На наклонно-направленных скважинах интервал ПВР должен прогрессивно уменьшаться при нарастании отхода от вертикали. В случае если зенитный угол ствола составляет 45 град и более, рекомендуемый интервал не должен превышать 10 метров. Интервал перфорации должен быть ограничен на сква-жинах с большим отходом и горизонтальных. Меньшие интервалы ПВР сле-дует предусмотреть и в случае жестких пород, а также при неблагоприятной ориентации стрессов в призабойной зоне. Для горизонтальных скважин в ме-ловых породах рекомендуемый интервал перфорации составляет от 0,7 до 2,5 метров, в зависимости от ориентации ствола. В более жестких породах интер-вал ПВР должен быть сокращен до 0,7 м.
На вертикальных скважинах и скв с зенитным углом менее 45 град про-стрел выполняется с фазированием 60 град. При больших углах отхода и на горизонтальных скважинах прострел выполняется с фазированием от 0 до 180 град с ориентацией кровли и подошвы интервала перфорации по вектору силы тяжести. За исключением случаев частичной (ограниченной) перфора-ции плотность ПВР должна быть как минимум 10 отв./м. Как правило, глу-бина отверстий в 100-150 мм является достаточной.
Депрессия на пласт может снизить начальное давление разрыва на 68 атм и, вероятно, даст возможность привлечения к ГРП большей части интер-вала перфорации. Вызов притока перед ГРП имеет такой же эффект. В иных случаях избыточное (репрессия) или сбалансированное давление может быть достаточным. Перфорирование на очень высокой репрессии перед ГРП мо-жет помочь минимизировать проблемы с искривлением каналов, обуслов-ленным некачественными работами ПВР, однако, как правило, не рекомен-дуется.
2.5.5. Дизайн гидравлического разрыва пласта
Традиционно рассматриваемые моменты включают:
Зенитный угол и азимут. В идеальном случае желательно рассматривать в качестве кандидатов для ГРП вертикальные скважины, поскольку отход даже в 15 град ведет к росту давления закачки и риску преждевременного «Стопа», а также к резкому снижению продуктивности после ГРП. Другим вариантом является подбор скважины с отходом, траектория которой находится в плос-кости трещины.
Траектория скважины. Данное обстоятельство критично и при работах с ГНКТ и операциях (ГИС) на кабеле, без исключения требуемых при прове-дении ГРП. Важно, чтобы траектория скважины не ограничивала выполне-ние этих работ.
Расчет проницаемости коллектора. Обычной проблемой, особенно, но, к сожалению, не ограничивающейся разработкой месторождения и интенсифи-кации притока после ГРП является то обстоятельство, что проницаемость коллектора известна лишь в широком диапазоне. Следует предпринять все усилия к исследованию скважины перед ГРП для получения точных (в ра-зумных пределах) значений проницаемости и скина. Какая полудлина и про-водимость трещины должна учитываться при подготовке дизайна? Если не-обходимо рассчитать дизайн ГРП, исходя из соображений максимального дебита, то, грубо говоря, длина трещины рассчитывается по нижней границе проницаемости, а проводимость - по верхней. Это обеспечивает оптимиза-цию параметров трещины с точки зрения дебита, хотя и потребует дополни-тельных затрат из-за большего объема проппанта.
Повторный ГРП может привести к изменениям стрессов породы или росту фильтрации в призабойной зоне, что окажет влияние на будущие ГРП.
Качество цементирования (целостность сцепления). Чаще всего, качеству цементирования не придается той важности, которой оно заслуживает. Каче-ственный цемент в зоне эксплуатационного хвостовика и интервала перфо-рации является обязательным условием для того, чтобы не допустить разви-тия трещины за колонной в нежелательные зоны. Это особенно важно при ГРП вблизи зон контактов или при закачке кислоты перед ГРП.
Данные по соседним скважинам - Соберите данные по ранее выполнен-ным ГРП в районе работ, включая данные по градиенту разрыва по нагнетательным скважинам и испытаниям на гидроразрыв по данным буре-ния. Это послужит хорошей оценкой при расчете давлений ГРП и прочих па-раметров дизайна, таких как фильтрация и время до получения ТСО. При ГРП в районах с естественным трещинообразованием важно обеспечить на-личие понизителей фильтрации, таких как песок с размером частиц 100 меш и/или силикатной муки, для включения в состав жидкости ГРП и мини-ГРП.
Забойные манометры (ЗМ) с работой в реальном времени или записью в блок памяти. При ГРП сложных пластов с необычными стрессами в тектониче-ски-активных зонах или при ГРП в скважинах с большим отходом и горизон-тальных, применение ЗМ с выдачей данных в реальном времени является в высшей мере рекомендуется. Такие ЗМ могут размещаться на колонне ГРП или на НКТ сразу под пакером, с кабелем с другой стороны. Аналогично, если предусматривается сравнительно простой ГРП, например, в приурочен-ном коллекторе с нормальными режимами стрессов, достаточно использо-вать ЗМ с записью данных в блок памяти. Такие ЗМ легко извлекаются через скважинные камеры газлифтной установки, либо в промежутке между мини-ГРП и основным ГРП. Данные ЗМ критичны для оптимизации дизайнов ГРП и оценки работы скважины впоследствии.
Полудлина и проводимость трещины. Обычно рассчитываются, чтобы до-биться максимальной продуктивности с учетом затрат.
Высота трещины. Критичное влияние на успешность ГРП может оказать прогноз развития трещины в высоту на новых скважинах, с возможным про-никновением в нижележащие водоносные или вышележащие газоносные пласты. В низкопродуктивных зонах проблемой может являться чрезмерное увеличе-ние высоты трещины. Использование линейных гелей или сшитой нефти мо-жет быть оптимальным для этих целей.
2.5.6.Заключительные работы
После проведенного гидроразрыва и спада давления из скважины извле-кается подземное оборудование и замеряется забой. При наличии песчаной пробки производится промывка ее.
В том случае, если для контроля местоположения трещин и оценки их раскрытия закачивался меченый изотопами материал, производится повтор-ный замер гамма-каротажа. Сопоставление контрольного и проведенного за-меров гамма-каротажа позволяет установить интервалы разрыва, а по вели-чине зернистого «меченого» материала оценивают раскрытие трещин.
Освоение и эксплуатация скважины после процесса в большинстве слу-чаев производятся тем же способом, как и до гидроразрыва.
После установления постоянного отбора жидкости из скважины произ-водится исследование методами установившегося и неустановившегося от-бора для определения коэффициента продуктивности по добывающим или коэффициента приемистости по нагнетательным скважинам и других пара-метров пласта, призабойной зоны скважины. Для выявления качественных изменений, происшедших в скважине после гидроразрыва, следует произво-дить замеры дебита нефти и газа, процента обводненности, количества выно-симого песка и т.д.
Для более полного представления о длительности эффекта в скважине при последующей эксплуатации ее, помимо замеров дебита нефти и газа, не-обходимо периодически (один раз в квартал) производить исследования по изучению динамики коэффициента продуктивности. Особенно такие иссле-дования необходимы при значительных изменениях режима работы насосной установки (длины хода, числа качаний, глубины подвески и диаметра насоса) или режимов работы фонтанного или газлифтного подъемников.
2.5.7. Техника для гидравлического разрыва пласта
Смеситель (блендер):
Смеситель монтируется на грузовом автомобиле типа "Kenworth" Т800 6х6 рассчитана на эксплуатацию в диапазоне температур окружающего воздуха от - -40°С до +40 °С.
Смесительная установка характеризуется следующими техническими данными:
- расход жидкости - 7,9 мЗ/мин.;
- максимальное давление на выходе - 5,3 атм.;
- максимальная плотность на выходе - 2,4 кг песка на 1 литр;
- максимальный расход сухих химических веществ - 0,074 мЗ/мин.;
- максимальный расход жидких химических веществ - 57 л/мин.;
- максимальная подача расклинивающего агента - 7260 кг/мин.
Привод смесительной установки - гидравлический. Привод насоса - от многоступенчатой коробки передач с гидроприводом от силовой установки на шасси автомобиля. Насос питает гидродвигатели, которые приводят в действие следующие агрегаты:
- всасывающий центробежный насос;
- нагнетательный центробежный насос;
- две системы сухих добавок;
- две системы жидких добавок;
- два шнека для подачи расклинивающего агента;
- один перемешиватель растворов;
- систему шнекового подъема расклинивающего агента.
Смесительная система:
Смесительный бак:
Смесительная система "Stewart & Stevenson" содержит цилиндрический смеситель, построенный на принципе "бак в баке" для обеспечения полного и равномерного смешивания растворов. Чистая жидкость поступает в смесительный бак через всасывающий коллектор и далее проходит в радиальном направлении внутри наружной жидкостной камеры.
Циркулируя в наружной камере, жидкость перетекает через верхнюю радиальную кромку наружной стенки внутренней камеры, во внутреннюю смесительную камеру, смешиваясь с подаваемыми в нее расклинивающими агентами.
Благодаря большой поверхностной зоне наклонных стенок внутренней камеры проппант тщательно увлажняется, не вызывая при этом ненужной аэрации раствора. В нижней части камеры установлен миксер с регулируемой скоростью вращения лопаток, который обеспечивает полное и равномерное смешивание раствора.
Смеситель содержит также систему автоматического регулирования уровня жидкости. В камеру смешивания также подаются химические добавки из соответствующих систем сухих и жидких добавок.
Шнеки для загрузки расклинивающего агента:
В задней части установки монтируются два шнека диаметром 30,5 см с переменной частотой вращения. У основания шнековых транспортеров установлен стальной бункер для загрузки проппанта.
На шнеках смонтированы электрические датчики для регистрации объема и скорости подачи проппанта.
Шнековый транспортер поднимается и опускается в транспортное или рабочее положение. Имеется также механическое блокировочное устройство для фиксации шнеков в установленном гидромеханизмами положении.
Всасывающий насос и коллекторы:
Всасывающий центробежный насос "Mission Magnum" обеспечивает перекачивание жидкостей с интенсивностью 11 м3/мин, из емкостей в смесительный бак или к насосным установкам. На всасывающем коллекторе смонтировано девять входных штуцеров диаметром 4" с дроссельным затвором в каждом и соединительным фитингом с внутренней резьбой. Нагнетательная линия соединяется трубопроводами со смесительным баком.
Нагнетательный насос:
Нагнетательный центробежный насос "Mission Magnum" обеспечи-вает перекачивание жидкостей с интенсивностью 11 мЗ/мин, из смесите-льного бака, насыщенные проппантом смеси. На нагнетательном коллекторе смонтировано шесть входных штуцеров диаметром 4" с дроссельным клапаном в каждом и соединительным фитингом с внутренней резьбой.
Контрольные приборы (расходомеры и плотномеры):
Между всасывающим коллектором и смесительным баком устанавливается расходомер турбинного типа. Такой же расходомер устанавливается и в нагнетательной магистрали. Там же смонтирован плотномер нуклонного типа 200МСI. Эти приборы оборудуются соответствующими датчиками и электрическими кабелями для соединения этих приборов с суммирующими цифровыми приборами.
Система сухих добавок:
Смеситель оснащен двумя системами сухих добавок с изменяемой частотой вращения. Для подачи сыпучих химикатов используются шнековые транспортеры с производительностью 0.037 мЗ/мин.
Система жидких химических добавок:
Смесительная установка оснащена двумя насосными системами жидких добавок с изменяемой частотой вращения каждая из них оборудована расходомерами в нагнетательной линии с датчиками и кабелями для соединения с сумматорами расхода добавок, которые смонтированы в кабине управления установкой.
Системы жидких добавок подают соответствующие химикаты с указанной ниже производительностью при давлении выше 5 кг/см2:
- система 1: 19 л/мин;
- система 2: 38 л/мин.
Блок манифольдов:
Установка смонтирована на грузовом а/м "Mersedes Bens 2629" и предназначена для работы в диапазоне температур от - 40°С до +40°С.
На шасси смонтирован гидравлический кран "МFG" с поворотной стрелой, который используется для снятия и установки сетчатого короба с гибкими соединениями, а также для других погрузочно-разгрузочных работ.
Блок манифольдов состоит из двух частей: манифольда низкого давления и манифольда высокого давления. Манифольд низкого давления представляет собой сварную конструкцию из стальных труб диаметром 10". Манифольд имеет 8 точек ввода, соединяемых шлангами с нагнетательной линией смесителя и по 6 выводов диаметром 4"с каждой стороны манифольда для подсоединения всасывающих линий насосных установок. Каждое соединение имеет дроссельный клапан.
Манифольд высокого давления представляет собой конструкцию, собранную из стальных труб диаметром З", жестко закрепленную на салазках и служит для подключения до шести насосных установок. На каждом из вводов установлен обратный клапан, что исключает перетек жидкости из линии высокого давления в насос и задвижка поворотного типа.
Снятие показаний давления в манифольде производится через датчик, соединенный при помощи кабеля с аналого-цифровым преобразователем, установленным в станции управления.
Блок манифольдов оснащен комплектом труб диаметром 3" и гибких соединений диаметром 3" различной длины. Демонтаж и монтаж блока производится при помощи гидравлической лебедки, смонтированной на шасси автомобиля.
Насосная установка (4 ед.) Модель FC-2251:
Установка может нагнетать ингибированную кислоту и прочие расклинивающие растворы; управляется на расстоянии либо с пульта дистанционного управления, либо с помощью станции управления.
Установка рассчитана на эксплуатацию в длительном режиме нагнетания. Силовая установка - 2-х тактный дизельный двигатель "DETROIT DIESEL" 16У-149ТIВ". Двигатель установки развивает мощность на маховике (по условиям SАE) до 2250 л.с. при 2050 об/мин в прерывистом и непрерывном режиме эксплуатации.
Трехплунжерный насос SРМ ТWS 2000 развивает гидравлическую мощность не менее 2000 л.с.
Основные характеристики:
- диаметр плунжеров - 127 мм;
- ход плунжера - 203,2 мм;
- передаточное число - 6,353 : 1;
- максимальное рабочее давление - 802 кг/см2 при расходе 772 л/мин;
- максимальная производительность - 2547 л/мин.
- корпус насосной установки и выкидная линия выдерживают давление до 1050 кг/см2.
Передвижная автоматизированная установка:
Сбора данных и управления Модель ЕС-22АСD
Это установка с программным и техническим обеспечением, она включает вспомогательный пульт управления ГРП и компьютерные устройства для сбора и регистрации данных, обработки полученных результатов и т.д. Станция снабжена шестью катушками с кабелем (40 м каждый), предназначенными для подключения следующих потребителей и контроллеров:
- линии для ввода данных о темпе закачки жидкости;
- линии для ввода данных о давлении в НКТ;
линии для ввода данных о давлении в затрубном пространстве;
- линии для ввода данных о плотности смеси рабочей жидкости и
расклинивающего агента;
линии для ввода данных о скорости оборотов шнеков;
- линии для ввода данных о скорости подачи жидких химреагентов.
Сигналы от внешних устройств поступают на стойку аналогово-цифрового преобразователя. Преобразованные сигналы поступают на 2 компьютера, где регистрируются в режиме реального времени.
Контроль за производством ГРП в режиме реального времени производится при помощи программы, регистрирующей сигналы от любых выше перечисленных внешних устройств что позволяет оперативно вносить необходимые коррективы в процесс ГРП.
Питание всех систем производится от генератора мощностью 6,4 кВт при частоте вращения 1500 об/мин. Привод генератора - дизельный двигатель "Generac Series".
Прочее оборудование:
Кроме того, в состав комплекта спецтехники для производства ГРП входят:
- а/м для транспортировки расклинивающего агента, смонтированный на базе "Mersedes Bens", грузоподъемностью 18 т;
- насосный агрегат ЦА-320;
- а/м для транспортировки химреагентов;
- вакуумная машина;
- вахтовая машина К-40.
2.5.8. Материалы, применяемые при ГРП
Технические жидкости:
Рабочие жидкости для ГРП представляют собой эмульсии и жидкости на углеводородной или водной основах.
Наиболее часто в процессе ГРП на промыслах применяют следующие рабочие жидкости. На углеводородной основе - дегазированная нефть, амбарная нефть, загущенная нефть, мазут или его смеси с нефтями, керосин или дизельное топливо, загущенное специальными реагентами. На водной основе - сульфит-спиртовая барда, вода, растворы соляной кислоты; вода, загущенная различными реагентами, загущенные растворы соляной кислоты. Эмульсии - гидрофобная водо-нефтяная, гидорфильная водо-нефтяная, нефтекислотные и керосинокислотные.
Расклинивающие материалы:
Песок для ГРП. К песку для ГРП предъявляются следующие требования: механическая прочность (достаточная, чтобы не разрушиться под весом вышележащих пород); отсутствие широкого разброса по фракционному составу.
Плотность укладки песка в созданной трещине определяется зазором трещины, фильтруемостью жидкости-песконосителя и концентрацией песка в этой жидкости.
Для ГРП чаще всего применяют отсортированный кварцевый песок (проппант) фракции 0,5-0,8 мм. Кроме того применяются и более прочные материалы: стеклянные и пластмассовые шарики, корунд и агломерированный боксит.
2.5.9. Факторы, определяющие эффективность гидроразрыва пласта
Существует ряд факторов, которые следует учитывать при проектировании процесса ГРП.
1) Литологическая характеристика пласта, а именно тип коллектора, степень сцементированности зерен, степень трещиноватости и кавернозности, степень глинистости. Из опыта ГРП по России известно, что наибольший эффект от проведения операций ГРП получается в карбонатах или сильно сцементированных песчаниках с низким содержанием глин и малой степенью трещиноватости. Неуспешные операции ГРП определялись некоторыми признаками и один из первых это разрушение глинистых экранов и, как следствие резкое, увеличение обводненностью скважин. Наличие в пласте трещин ставит под угрозу выполнение ГРП, так как возможен уход жидкости разрыва в естественные трещины и мы не получим никакого эффекта.
2) Литологическая неоднородность, характеризующаяся коэффициентами песчанистости, расчлененности, анизотропии. Большой эффект получается при воздействии на однородный пласт с низким коэффициентом анизотропии по проницаемости.
3) Физические свойства пласта (пористость, проницаемость). Эффект будет положительным в пластах с низкими фильтрационными характеристиками, так как при высоких данных характеристиках нет смысла проводить ГРП.
4) Наличие газовой шапки и подошвенной воды. При их близости ставится под сомнение успешность ГРП. Известно также, что во избежание прорыва воды не рекомендуется осуществление ГРП в случаях, когда раздел между продуктивным и водоносным горизонтами менее 10 м.
5) Толщина продуктивного пласта. Для направленного ГРП необходимо пласт отпакеровать двумя пакерами. Поэтому достаточно проблематично осуществление данного процесса в пластах мощностью менее 2 м.
6) Глубина залегания пласта, а точнее величина пластового давления.
7) Степень закольматированности призабойной зоны пласта. В отдельных случаях невозможно провести иные ГТМ по повышению продуктивности, кроме ГРП.
8) Степень обводненности продукции скважин, которая характеризует равномерность дренирования эффективной толщины пласта. При наличии в продуктивной толщине высоко обводненных пропластков эффективность ГРП низка.
9) Темп закачки и давление обработки иногда ограничивают, в зависимости от градиента разрыва пласта и возможностей устьевого оборудования.
10) Жидкость разрыва оказывает сильное влияние на распределении и закачивание расклинивающих агентов и на общую эффективность воздействия на пласт. Высоковязкая жидкость создает более широкую трещину и лучше транспортирует расклинивающие агенты, но при ее закачивании возникает более высокое давление, которое создает предпосылки для нежелательного роста трещины по вертикали.
11) Объем жидкости разрыва. От параметра зависит длина и раскрытость трещины.
12) Качество расклинивающего агента. Прочность расклинивающего агента должна быть достаточной, чтобы не быть раздавленной массой вышележащей толщи горных пород и, в то же время, зернистые материалы не должны вдавливаться в поверхность трещины. Не допускается широкий разброс по фракционному составу. Считается, что с увеличением размера частиц увеличивается гидропроводность трещины, а с уменьшением их размера повышается транспортирующая способность жидкости-песконосителя.
13) Концентрация расклинивающего агента. Содержание песка либо другого агента определяется удерживающей способностью жидкости-песконосителя. При малом содержании агента имеем возможность того, что трещина полностью не заполнится, а при большом появляется возможность образования песчаной пробки.
14) Объем продавочной жидкости. Он определяет конечную глубину проникновения расклиненной трещины и ее проводимость.
Все эти факторы можно разделить на геологические (исходная информация) - факторы не поддающиеся корректировке и технологические, которые можно регулировать, используя промысловый опыт.
Проведенные исследования на месторождениях выявили стимулирующее воздействие ГРП в добывающей скважине на режимы работы соседних скважин, что противоречит результатам расчетов в рамках большинства существующих моделей. /2/.
Дополнительная добыча нефти от проведения ГРП в нагнетательных скважинах на 30% выше, чем в добывающих. Это обусловлено более сильным влиянием достигаемого в результате ГРП увеличения дебита нагнетательной скважины на режим дренирования участка при равных с добывающими скважинами кратностях прироста продуктивности.
При выполнении ГРП по традиционной технологии происходит проникновение трещины вглубь экранов, а при небольшой толщине экранов в кровле или подошве пласта - нарушение их герметичности. В последующем при эксплуатации скважин это приводит к прорыву воды или газа по трещине на забой и уменьшению дебитов.
2.6. Расчет параметров гидравлического разрыва пласта
Страницы: 1, 2, 3, 4, 5, 6, 7
|