Анализ условий формирования и расчет основных статистических характеристик стока реки Кегеты
Q on =
2,391
? =
0,309
Cv =
0,129
? Q%=
1,656
< 5…10%
? Cv% =
9,129
<10…15%
9,028
<10…15%
Q N = Q on
При водохозяйственном планировании, строительном и энергетическом проектировании, которые предусматривают естественный или видоизмененный режим речного стока, необходимо знать не только среднюю величину (норму) стока, но и сток маловодных и многоводных лет, а также пределы возможных колебаний годового стока в будущем многолетнем периоде.
Если бы колебания стока имели определенную периодичность и был бы известен закон колебаний, то по имеющимся данным наблюдений можно было бы установить хронологический ход стока на заданный будущий период времени и определить, когда будет наблюдаться та или иная величина стока или сколько раз за это время годовой сток превысит то или иное значение. Но такая задача пока неразрешима. Поэтому расчеты годового стока и других его характеристик представляются в виде количественной оценки отвечающей той или иной заданной обеспеченности или повторяемости - в среднем один раз в N лет без указания срока наступления расчетной величины.
Обеспеченностью гидрологической величины называется вероятность того, что рассматриваемое ее значение может быть превышено. При этом различают:
вероятность превышения для явлений, наблюдаемых только один раз в году;
- вероятность превышения среди совокупности всех возможных значений для явлений, которые могут наблюдаться несколько раз в году;
- вероятность превышения в рассматриваемом пункте или на рассматриваемой территории в любом пункте.
Вероятность служит мерой оценки достоверности появления того или иного значения рассматриваемой характеристики или явления.
Различают теоретическую вероятность (lim m/n=p) и эмпирическую вероятность или частность (m/n), выявляемую из наблюдений частоты появления благоприятных случаев, составляющих очень длинный ряд.
Для установления эмпирической обеспеченности членов ограниченного ряда, которая бы в большой мере отвечала теоретической обеспеченности, предложено несколько формул, среди них формулы:
С.Н. Крицкого и М.Ф. Менкеля /4/
p=(m/(n+1)) 100% (23)
Н.Н. Чегодаева
p=((m-0.3)/(n+0.4)) 100% (24)
Формула (23) выведена в предположении, что используемый в расчетах ряд, охватывающий ni - летний период, среди других n - летних периодов, составляющих генеральную совокупность, характеризуется повышенной водностью высоких расходов и пониженной низких. Она дает некоторый запас (завышение) в верхней части кривой обеспеченности и рекомендуется для расчетов максимальных расходов.
Формула (24) основана на предположении, что рассматриваемый ni - летний период по своей водности занимает медианное положение среди других n - летних периодов. Эта формула дает запас (занижение) в нижней части кривой обеспеченности и рекомендуется при расчетах годового, сезонного и минимального стока.
Для построения теоретических кривых обеспеченности, которые соответствовали бы эмпирическим кривым, необходимо по данным наблюдений вычислить значения параметров их дифференциального уравнения и произвести его интегрирование.
Практически достаточно установить три основных параметра теоретической кривой распределения - среднюю многолетнюю величину (норму) Q, которая, будучи выражена в относительных единицах - модульных коэффициентах K, равна единице; коэффициент изменчивости (вариации) Cv; коэффициент асимметрии Cs, по которым могут быть построены теоретические кривые обеспеченности годового стока по формуле /2,4/:
Kр%=Фр%Cv+1 (25)
где Фр% = - Фр% (Cs, p%), функция Фостера принимается по табл.
Теоретическую кривую обеспеченности необходимо сопоставить с данными непосредственных наблюдений, вычисленными по формулам 23 или 24. Если точки эмпирической обеспеченности, нанесенные на график теоретической кривой обеспеченности, осредняют последнюю, значит она соответствует действительности. Несоответствие эмпирических точек и теоретической кривой обеспеченности указывает на неправильность определения параметров кривой, в первую очередь на неточность определения коэффициента асимметрии Cs. В этом случае необходимо изменить соотношение Cs и Cv и вновь построить теоретическую кривую обеспеченности.
Кривая обеспеченности стока, построенная в простых координатах, имеет большую кривизну в верхних и нижних частях. Это затрудняет пользование кривой и графическую экстраполяцию крайних участков кривой, представляющий наибольший интерес при гидрологических расчетах. Поэтому для построения кривой обеспеченности применяют специальную клетчатку вероятностей. Основное свойство клетчатки вероятностей состоит в том, что на ней кривая обеспеченности с коэффициентом асимметрии Cs=0 получает вид прямой. При других значениях Cs кривые обеспеченности, построенные на клетчатке вероятностей, имеют вид плавных линий, причем кривизна их увеличивается с увеличением коэффициента асимметрии.
На рисунке 10 приведена аналитическая и эмпирическая кривые обеспеченности годового стока на клетчатке вероятности с обычной вертикальной шкалой.
Для построения эмпирической кривой обеспеченности расчеты удобнее выполнять, в форме табл. 8.
Таблица 8
№
год
ср. г.расх.
Qi в порядке
P%
убывания
1
1932
2,51
3,26
1,58
2
1933
2,55
3,02
3,83
3
1934
2,60
3,01
6,08
4
1935
2,35
2,99
8,33
5
1936
2,12
2,98
10,59
6
1937
2,15
2,97
12,84
7
1938
1,58
2,88
15,09
8
1939
2,11
2,72
17,34
9
1940
2,37
2,67
19,59
10
1941
2,43
2,64
21,85
11
1942
3,26
2,60
24,10
12
1943
1,81
2,56
26,35
13
1944
1,80
2,56
28,60
14
1945
2,22
2,55
30,86
15
1946
2,45
2,51
33,11
16
1947
1,88
2,47
35,36
17
1948
2,15
2,46
37,61
18
1949
3,02
2,45
39,86
19
1950
2,46
2,43
42,12
20
1951
2,00
2,43
44,37
21
1952
2,43
2,37
46,62
22
1953
2,28
2,35
48,87
23
1954
2,29
2,35
51,13
24
1955
2,97
2,30
53,38
25
1956
2,98
2,30
55,63
26
1957
2,16
2,30
57,88
27
1958
2,35
2,29
60,14
28
1959
2,47
2,28
62,39
29
1960
2,08
2,26
64,64
30
1961
2,30
2,23
66,89
31
1962
2,99
2,22
69,14
32
1963
2,23
2,16
71,40
33
1964
2,56
2,16
73,65
34
1965
2,16
2,15
75,90
35
1966
3,01
2,15
78,15
36
1967
2,67
2,12
80,41
37
1968
2,30
2,11
82,66
38
1969
2,88
2,08
84,91
39
1970
2,56
2,00
87,16
40
1971
2,30
1,96
89,41
41
1972
2,72
1,88
91,67
42
1973
2,64
1,81
93,92
43
1974
1,96
1,80
96,17
44
1975
2,26
1,58
98,42
Для построения теоретической кривой обеспеченности необходимо определить величины расходов, имеющих обеспеченность Р = 0,01%, 0,1%, 1%, 5%, … 99,9% по формуле 25. Полученные значения удобнее свести в табл. 9
Таблица 9
Р%
0,1
1
5
99,9
Ф P%
KP%
QP%
В работе необходимо вычислить значения расхода с вероятностью Р = 0,05%, 0,2%, 1%, 50%, 75% и 90%.
3.2 Характеристики годового стока
Сток - это движение воды по поверхности, а также в толще почв и горных пород в процессе ее круговорота в природе. При расчетах под стоком понимается количество воды, стекающей с водосбора за какой-либо период времени. Это количество воды может быть выражено в виде расхода Q, объема W, модуля M или слоя стока h.
Объем стока W - количество воды, стекающей с водосбора за какой-либо период времени (сутки, месяц, год и т.п.), - определяется по формуле
W=QT [м3], (19)
где Q - средний расход воды за расчетный период времени, м3/с, T - число секунд в расчетном периоде времени.
Так как средний расход воды был вычислен ранее как норма годового стока, объем стока р. Кегеты за год W = 2.39•365,25•24•3600 = 31764096м3.
Модуль стока М - количество воды, стекающей с единицы площади водосбора в единицу времени, - определяется по формуле
М=103Q/F [л/(скм2)], (20)
где F - площадь водосбора, км2.
Модуль стока р. Кегеты М=103 • 2.39/178 = 13.42 л/(скм2).
Слой стока h мм - количество воды, стекающей с водосбора за какой-либо период времени, равное толщине слоя, равномерно распределенного по площади этого водосбора, - определяется по формуле
h=W/(F 103)=QT/(F 103). (21)
Слой стока для бассейна р. Кегеты h = 31764096/ (178 •103) = 178.44 мм.
К безразмерным характеристикам относятся модульный коэффициент и коэффициент стока.
Модульный коэффициент К представляет собой отношение стока за какой либо конкретный год к норме стока:
К = Qi /Q0 = Wi /W0 = hi /h0, (22)
и для р. Кегеты за рассматриваемый период К меняется от К =1.58 / 2.39= 0.66 для года с минимальным расходом до К = 3.26 / 2.39 = 1.36 для максимального расхода.
Коэффициент стока - отношение объема или слоя стока к количеству выпавших на площадь водосбора осадков х, обусловивших возникновение стока:
= h/x. (23)
Коэффициент стока показывает, какая часть осадков идет на образование стока.
В курсовой работе необходимо определить характеристики годового стока для принятого к рассмотрению бассейна, приняв норму стока из раздела
3.3 Внутригодовое распределение стока
Внутригодовое распределение стока рек занимает важное место в вопросе изучения и расчетов стока как в практическом, так и в научном отношении, являясь в тоже время наиболее сложной задачей гидрологических исследований /2,4,13/.
Основные факторы, определяющие внутригодовое распределение стока и его общую величину, - климатические. Они определяют общий характер (фон) распределения стока в году того или иного географического района; территориальные изменения распределения стока следуют за изменением климата.
К факторам, влияющим на распределение стока в течении года относятся озерность, лесистость, заболоченность, размеры водосборов, характер почв и грунтов, глубина залегания грунтовых вод, и т.д., которые в определенной мере должны учитываться в расчетах как при отсутствии, так и при наличии материалов наблюдений.
В зависимости от наличия данных гидрометрических наблюдений применяются следующие методы расчета внутригодового распределения стока:
при наличии наблюдений за период не менее 10 лет: а) распределение по аналогии с распределением реального года; б) метод компоновки сезонов;
при отсутствии или недостаточности (менее 10 лет) данных наблюдений: а) по аналогии с распределением стока изученной реки-аналога; б) по районным схемам и региональным зависимостям параметров внутригодового распределения стока от физико-географических факторов.
Внутригодовое распределение стока обычно рассчитывается не по календарным годам, а по водохозяйственным, начиная с многоводного сезона. Границы сезонов назначаются едиными для всех лет с округлением до месяца.
Расчетная вероятность превышения стока за год, лимитирующие период и сезон назначается в соответствии с задачами водохозяйственного использования стока реки.
В курсовой работе необходимо выполнить расчеты при наличии гидрометрических наблюдений.
Расчеты внутригодового распределения стока методом компоновки
Исходными данными для расчета являются среднемесячные расходы воды и в зависимости от цели использования расчета - заданный процент обеспеченности Р и деление на периоды и сезоны.
Расчет делится на две части:
межсезонное распределение, имеющее наиболее важное значение;
внутрисезонное распределение (по месяцам и декадам, устанавливаемое с некоторой схематизацией.)
Межсезонное распределение. В зависимости от типа внутригодового распределения стока год делится на два периода: многоводный и маловодный (межень). В зависимости от цели использования один из них назначается лимитирующим.
Лимитирующий-это наиболее напряженный с точки зрения водохозяйственного использования период (сезон). Для целей осушения лимитирующим периодом является многоводный; для целей орошения, энергетики-маловодный.
В период включается один или два сезона. На реках с весенним половодьем для целей орошения выделяются: многоводный период (он же сезон) - весна и маловодный (лимитирующий) период, включающий в себя сезоны; лето-осень и зима, причем лимитирующим сезоном при орошении является лето-осень (при энергетическом использовании-зима).
Расчет выполняется по гидрологическим годам, т.е. по годам, начинающимся с многоводного сезона. Сроки сезонов назначаются едиными для всех лет наблюдений с округлением их до целого месяца. Продолжительность многоводного сезона назначается так, чтобы в границах сезона помещалось половодье как в годы с наиболее ранним сроком наступления, так и с наиболее поздним сроком окончания.
В задании продолжительность сезонов можно принять следующей: весна - апрель, май, июнь; лето-осень - июль, август, сентябрь, октябрь, ноябрь; зима - декабрь и январь, февраль, март следующего года.
Величина стока за отдельные сезоны и периоды определяется суммой среднемесячных расходов (табл. 10). В последнем году к расходу за декабрь прибавляются расходы за три месяца (I, II, III) первого года.
При расчете по методу компоновки внутригодовое распределение стока принимается из условия равенства вероятности превышения стока за год, стока за лимитирующий период и внутри его за лимитирующий сезон. Поэтому необходимо определить расходы заданной проектом обеспеченности (в задании Р=80%) для года, лимитирующих периода и сезона. Следовательно, требуется рассчитать параметры кривых обеспеченности (О0, Сv и Сs) для лимитирующих периода и сезона (для годового стока параметры вычислены выше). Вычисления производятся методом моментов в табл. 10 по схеме, изложенной выше для годового стока.
Определять расчетные расходы можно по формулам:
годового стока
Орасгод = Kр'12Q0, (26)
лимитирующего периода
Орасмеж= KрQ0меж, (27)
лимитирующего сезона
Орасло= Kр'Qло (27)
где Kр', Kр, Kр' - ординаты кривых трехпараметрического гамма-распределения, снятые с таблицы соответственно для Сv - годового стока. Сv меженного стока и Сv для лета-осени.
Примечание. Так как расчеты выполняются по среднемесячным расходам, расчетный расход за год требуется умножить на 12.
Одним из основных условий метода компоновки является равенство
Орасгод= Орассез. Однако это равенство нарушится, если расчетный сток за не лимитирующие сезоны определять также по кривым обеспеченности (ввиду различия параметров кривых). Поэтому расчетный сток за не лимитирующий период (в задании - за весну) определяют по разности
Орасвес = Орасгод - Орасмеж, (28)
а за не лимитирующий сезон (в задании-зима)
Орасзим = Орасмеж. - Qло (29)
Расчет удобнее выполнить в форме табл. 10.
Внутрисезонное распределение - принимается осредненным по каждой из трех групп водности (многоводная группа, включающая годы с обеспеченностью стока за сезон Р<33%, средняя по водности 33<Р<66%, маловодная Р>66%).
Для выделения лет, входящих в отдельные группы водности, необходимо суммарные расходы за сезоны расположить по убыванию и подсчитать их фактическую обеспеченность. Так как расчетная обеспеченность (Р=80%) соответствует маловодной группе, дальнейший расчет можно производить для лет, входящих в маловодную группу (табл. 11).
Для этого в. графу «Суммарный сток» выписать расходы по сезонам, соответственные обеспеченности Р>66%, а графу «Годы» - записать годы, соответственные этим расходам.
Среднемесячные расходы внутри сезона расположить в убывающем порядке с указанием календарных месяцев, к которым они относятся (табл. 11). Таким образом, первым окажется расход за наиболее многоводный месяц, последним-за маловодный месяц.
Для всех лет произвести суммирование расходов отдельно за сезон и за каждый месяц. Принимая сумму расходов за сезон за 100%, определить процент каждого месяца А%, входящего в сезон, а в графу «Месяц» записать наименование того месяца, который повторяется наиболее часто. Если повторений нет, выписать любой из встречающихся, но так, чтобы каждый месяц, входящий в сезон, имел свой процент от сезона.
Затем, умножая расчетный расход за сезон, определенный в части межсезонного распределения стока (табл. 10), на процентную долю каждого месяца А% (табл. 11), вычислить расчетный расход каждого месяца.
Орас v = Орасвес А % v / 100% (30)
Полученные данные заносятся в табл. 12 «Расчетные расходы по месяцам» и на миллиметровке строится расчетный гидрограф Р-80% изучаемой реки (рис. 11).
Таблица 12. Расчетные расходы (м3/с) по месяцам
I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
Расчетные объемы (млн. м3) по месяцам
3.4 Расчет и построение кривой обеспеченности годового стока
При водохозяйственном планировании, строительном и энергетическом проектировании, которые предусматривают естественный или видоизмененный режим речного стока, необходимо знать не только среднюю величину (норму) стока, но и сток маловодных и многоводных лет, а также пределы возможных колебаний годового стока в будущем многолетнем периоде.
Если был бы известен закон колебаний стока, то по имеющимся данным наблюдений можно было бы определить, когда будет наблюдаться та или иная величина. Но такая задача пока неразрешима. Поэтому расчеты годового стока и других его характеристик представляются в виде количественной оценки отвечающей той или иной заданной обеспеченности.
Обеспеченностью гидрологической величины называется вероятность того, что рассматриваемое ее значение может быть превышено в среднем один раз в N лет без указания срока наступления расчетной величины.
Различают теоретическую вероятность (lim m/n=p) и эмпирическую вероятность (m/n), выявляемую из наблюдений частоты появления благоприятных случаев, составляющих очень длинный ряд.
Для установления эмпирической обеспеченности членов ограниченного ряда, которая бы в большой мере отвечала теоретической обеспеченности, предложено несколько формул, среди них формулы:
С.Н. Крицкого и М.Ф. Менкеля /4/
p=(m/(n+1)) 100% (24)
Н.Н. Чегодаева
p=((m-0.3)/(n+0.4)) 100%, (25)
где m - порядковый номер члена ряда, в котором значения рассматриваемой величины расположены в порядке убывания, n - число членов ряда.
Анализ формул (24) и (25) показывает, что для средних значений обеспеченности они дают близкие результаты. В области малых обеспеченностей формула Крицкого - Менкеля дает более высокие значения эмпирической обеспеченности, чем формула Чегодаева. В связи с этим нормами рекомендуется вести расчет эмпирической обеспеченности максимальных расходов по формуле (24) для определения максимумов стока малой обеспеченности. Формулу (25) рекомендуется применять при исследованиях годового и минимального стока.
Вычислив эмпирическую обеспеченность каждого члена ряда по этим формулам, можно построить эмпирическую кривую. Однако эмпирическоая кривая обеспеченности непосредственно не дает возможности решить вопрос о расходах за пределами фактических наблюдений. Поэтому в гидрологии применяется ряд типовых математических кривых распределения для экстраполяции эмпирической кривой обеспеченности.
Таким образом, чтобы построить эмпирическую кривую обеспеченности годового стока р. Кегеты следует использовать формулу (25). Для этого удобно результаты вычисления p% свести в таблицу 5.
Теперь, прежде чем строить график Q = f (p%), следует обратить внимание на одну важную деталь. Кривая обеспеченности стока, построенная в простых координатах, имеет большую кривизну в верхних и нижних частях. Это затрудняет пользование кривой и графическую экстраполяцию крайних участков кривой, представляющий наибольший интерес при гидрологических расчетах. Поэтому для построения кривой обеспеченности применяют специальную клетчатку вероятностей. Основное свойство клетчатки вероятностей состоит в том, что на ней кривая обеспеченности с коэффициентом асимметрии Cs=0 получает вид прямой. При других значениях Cs кривые обеспеченности, построенные на клетчатке вероятностей, имеют вид плавных линий, причем кривизна их увеличивается с увеличением коэффициента асимметрии. Поэтому обе кривые обеспеченности (и эмпирическая, и теоретическая) строятся на клетчатке вероятностей (рис. 11). При том их графики наносятся совместно, для того чтобы выявить, насколько они совпадают или не совпадают.
Для построения теоретических кривых обеспеченности практически достаточно установить три основных параметра теоретической кривой распределения (среднюю многолетнюю величину (норму) Q0, которая, будучи выражена в относительных единицах - модульных коэффициентах K, равна единице, Cv и Cs). теоретические кривые обеспеченности годового стока могут быть построены по формуле
Kр%=Фр%Cv+1 (26)
где Фр% = - Фр% (Cs, p%), функция Фостера принимается по таблице приложения 1 []. Причем CS, как указывалось раньше, не может быть вычислен ввиду малого ряда наблюдений и устанавливается методом подбора, исходя из условий наилучшего соответствия теоретической кривой обеспеченности годового стока данным наблюдений. С этой целью на клетчатку вероятностей наносят теоретические кривые обеспеченности, построенные при одном и том же CV и различных значениях CS. Для первой кривой принимают CS = 2 CV. Если точки эмпирической обеспеченности, наложенные на график теоретической кривой обеспеченности, усредняют последнюю, значит, она соответствует действительности, если же нет - необходимо изменить соотношение между CS и CV и вновь построить теоретическую кривую обеспеченности. Наиболее согласующуюся с эмпирическими точками кривую принимают за расчетную.
3.5 Расчет внутригодового распределения стока
Установление закономерностей внутригодового хода стока рек по календарным периодам, сезонам и внутри сезонов имеет важное научное и практическое значение, так как на его основе ведется планирование использования водных ресурсов для различных водохозяйственных целей, определяются основные параметры водохранилищ и гидротехнических сооружений.
Однако установить распределение стока в году очень сложно, так как на внутригодовое распределение стока влияет целый ряд физико-географических факторов (климат, факторы подстилающей поверхности, хозяйственная деятельность человека), количественный учет которых часто затруднен. Кроме того, внутригодовое распределение стока для какого-либо пункта реки не остается постоянным, оно изменяется из года в год, и притом весьма значительно.
Задача и способ расчета внутригодового распределения стока зависит от его назначения и схемы использования. Так, для проектирования водоснабжения наиболее неблагоприятными являются меженные сезоны, для орошения интерес представляет распределение стока в вегетационный период, при энергетическом использовании наибольший интерес представляет обычно зимняя межень, при судоходном использовании - период навигации.
Наиболее правильным с генетической точки зрения методом расчета внутригодового распределения стока является метод водного баланса. При этом уравнение водного баланса необходимо решить относительно y (стока) для каждого месяца или сезона года
y = x - E ± u,
где x - осадки, E - суммарное испарение, u - аккумуляционный член, включающий в себя накопление и стаивание снега и льда, накопление и расходование почвенных и грунтовых вод и изменение запасов воды в поверхностных водоемах (в русле и пойме реки) и на поверхности водосбора. Определение величины u практически представляет большие трудности, поэтому метод водного баланса не получил широкого применения. В настоящее время более развиты способы расчета внутригодового распределения стока, основанные, как и в случае годового стока, на изучении закономерностей распределения стока и применении методов математической статистики.
В зависимости от наличия данных гидрометрических наблюдений применяются следующие методы расчета внутригодового распределения стока:
при наличии наблюдений за период не менее 10 лет:
а) распределение по аналогии с распределением реального года;
б) метод компоновки сезонов;
при отсутствии или недостаточности (менее 10 лет) данных наблюдений: а) по аналогии с распределением стока изученной реки-аналога;
б) по районным схемам и региональным зависимостям параметров внутригодового распределения стока от физико-географических факторов.
Основной способ расчета календарного внутригодового распределения стока - метод компоновки. Расчет внутригодового распределения стока по методу компоновки делится на две части: межсезонное распределение, имеющее наиболее важное значение и рассчитываемое более точно, внутрисезонное распределение (по месяцам или декадам) устанавливается приближенно, с некоторой схематизацией.
Межсезонное распределение. В зависимости от типа внутригодового распределения стока год делится на два периода: многоводный и маловодный (межень). В зависимости от цели использования один из них назначается лимитирующим. Лимитирующим считается наиболее напряженный с точки зрения водохозяйственного использования период. В такой период может включаться один или два сезона.
Исходными данными для расчета являются среднемесячные расходы воды и выбранные в зависимости от цели использования расчета заданный процент обеспеченности p% и деление на периоды и сезоны. В таблице приведены среднемесячные расходы в створе Саламалик за период 10 лет, выбранный таким образом, что в него вошли годы и маловодной, и многоводной фазы. А заданный процент обеспеченности составляет 75%.
Расчет распределения выполняется по гидрологическим годам, который начинается с многоводного сезона. Сроки сезонов назначаются едиными для всех лет наблюдений с округлением их до целого месяца. Продолжительность многоводного сезона назначается так, чтобы в границах сезона помещалось половодье как в годы с наиболее ранним сроком наступления, так и с наиболее поздним сроком окончания. На р. Кегеты гидрологический год начинается в апреле.
В случае рек региона, в котором находится р. Кегета, разбиение гидрологического года на сезоны можно произвести следующим образом: весна - апрель, май, июнь; лето-осень - июль, август, сентябрь, октябрь, ноябрь; зима - декабрь и январь, февраль, март следующего года. Величина стока за отдельные сезоны и периоды определяется суммой среднемесячных расходов.
При расчете по методу компоновки внутригодовое распределение стока принимается из условия равенства вероятности превышения стока за год, стока за лимитирующий период и внутри его за лимитирующий сезон. Поэтому необходимо определить расходы заданной проектом обеспеченности для года, лимитирующих периода и сезона. Следовательно, требуется рассчитать параметры кривых обеспеченности (Q0, Сv и Сs) для лимитирующих периода и сезона (для годового стока параметры вычислены выше). Вычисления производятся методом моментов в табл. 10 по схеме, изложенной выше для годового стока.
Анализ водного режима и определение типа питания реки
Количество воды, поступающей в реки в различные периоды года, весьма различно, то есть распределение стока за год неравномерно. На распределение стока в первую очередь влияют климатические факторы-осадки и температура воздуха. Несмотря на значительные колебания, этих факторов в различные годы, они характеризуют общий тип годового распределения или форму гидрографа стока.
На распределение стока влияют также размер бассейна, его рельеф, геологическое строение, водоносные горизонты, наличие лесов, болот и озер, хозяйственная деятельность человека.
Климатические факторы, имеющие географическую зональность, определяют общий характер распределения стока в том или другом географическом районе. Поэтому различные источники питания средних рек в том или ином районе имеют постоянное соотношение, а форма гидрографа является устойчивой для разных рек. На этом принципе основаны различные классификации рек (например, классификации Б.Д. Зайкова, П.С. Кузина) /3/, которые отражают распределение годового стока.
Физико-географические факторы (факторы подстилающей поверхности) могут в значительной мере изменить внутригодовое распределение стока, свойственное данному району. Это особенно важно для малых горных рек, где влияние этих факторов может быть преобладающим.
Влияние рельефа на сток проявляется, однако, не только в вертикальной поясности гидрологических процессов-оно более многогранно, так как его особенности и, в частности, сочетание направлений горных хребтов и их конфигурация в той или иной степени определяют доступность речных бассейнов влажным воздушным массам. Воздействие рельефа проявляется не только на абсолютных величинах элементов водного (осадки, испарение, запасы влаги) и теплового баланса горных речных бассейнов, но и в их режиме: во времени наступления положительных температур воздуха весной и отрицательных - осенью, в продолжительности аккумуляции снега, в сроках начала, конца и продолжительности периода снеготаяния и т.п.
Из этого следует, что обычно применяемые для равнинных территорий методы гидрологического районирования для горных территорий полностью не применимы.
Поэтому для горной территории Средней Азии отошли от строго географического принципа гидрологического районирования и, ограничившись выделением в пределах указанных гидрографических систем областей формирования и рассеивания стока, дополнили эту схему гидрологического районирования приводимой ниже классификацией рек в изученных створах по типам питания, тесно связанной с вертикальной поясностью и гипсометрическими характеристиками водосборов рек.
В качестве критерия отнесения рек к тому или иному типу питания приняты показатели предложенной В.Л. Шульцем /15/ схемы классификации рек Средней Азии по типам питания, а именно:
- соотношение между средним объемом стока летнего (WVII-IX) половодья, характеризующегося преобладанием талых вод высокогорных снегов и ледников, и средним объемом стока весеннего половодья (WIII-VI), в котором преобладают талые воды сезонных снегов;
WVII-IX% - средний относительный (в% от годового) объем стока летнего половодья.
Третьим показателем для отнесения рек к тому или иному типу питания является месяц с максимальным стоком.
На основе дифференциации значений указанных трех показателей В.Л. Шульцем дана шкала классификации рек Средней Азии по типам питания (табл. 15):
Таблица 15. Схема классификации рек Средней Азии по типу их питания
Индекс типа питания
Типы рек
WVII-IX
(в % от годового)
Месяц с максимальным стоком
I
Реки ледниково-снегового питания
1.00
38
VII, VIII
II
Реки снегово-ледникового питания
0,99-0,27
40-17
V, VI
III
Реки снегового питания
0,26-0,18
16-12
IV, V
IV
Реки снегово-дождевого питания
0,17-0,00
13-0
III, IV, V
В курсовой работе необходимо установить фазы водного режима и тип питания реки согласно вышеприведенной классификации.
Список использованных источников
1. Биленко В.А. Анализ условий формирования и расчет основных статистических характеристик стока малых рек Кыргызстана: Методическое руководство к курсовой работе по гидрологии суши для студентов ЕТФ /Кыргызско-Российский Славянский университет. - Бишкек, 2008. - 36 с.
3. Советский энциклопедический словарь / Гл. ред. А.М. Прохоров. - 3-е изд. - М.: Сов. энциклопедия, 1984. 1600 с.
4. Ресурсы поверхностных вод СССР. Том 14. Средняя Азия. Вып.1. Бассейн р. Сыр-Дарьи. Под ред. И.А. Ильина. - Л.: Гидрометеорологическое издательство, 1969. - 438 с.
5. Киргизская Советская Социалистическая Республика: Энциклопедия / Гл. ред. Б.О. Орузбаева. - Ф.: Главная редакция Киргизской Советской Энциклопедии, 1982. - 488 с.
6. Ошская область: Энциклопедия / Гл. ред. Б.О. Орузбаева. - Ф.: Главная редакция Киргизской Советской Энциклопедии, 1989. - 448 с.
7. Атлас Кыргызской республики. Том первый. Природные условия и ресурсы. - М., 1987.
8. Г.В. Железняков, Т.А. Неговская, Е.Е. Овчаров. Гидрология, гидрометрия и регулирование стока. - М.: колос, 1984. - 205 с.