Борьба с парафином в условиях НГДУ "Лениногорскнефть"
3.2.3 Физические методы, применяемые в НГДУ «ЛН» для борьбы с отложениями АСПО
В НГДУ «ЛН» магнитные депарафинизаторы типа МОЖ-22Ш были внедрены на 17 скважинах (в 2000 году - на 7 скважинах, в 2002 году - на 10 скважинах) В качестве основного метода борьбы с АСПО магнитные депарафинизаторы были использованы на трех скважинах (№108, 6551А, 12518А), на 4 скважинах - в комбинации с остеклованными НКТ и на 10 скважинах - в комбинации со штангами центраторами - депарафинизаторами.
За период с октября 2000 года, когда началось внедрение магнитных депарафинизаторов, по октябрь 2002 года на данной категории скважин было проведено 16 подземных ремонтов по причине АСПО, причем на 3 скважинах (№108, 4030, 12946) по два ремонта. На скважинах, где магнитные депарафинизаторы были использованы в качестве основного метода борьбы с АСПО без применения других методов, межочистной период составил 50-110 суток и при подземных ремонтах по причине АСПО они были извлечены. На остальных скважинах межочистной период составил от 80 до 360 суток.
Анализ применения магнитных депарафинизаторов в качестве самостоятельного метода борьбы с АСПО и в комбинации с другими методами показал неэффективность данного метода и отказ от его применения в дальнейшем.
3.2.4 Химические методы, применяемые в НГДУ «ЛН» для борьбы с отложениями АСПО
3.2.4.1 Применение промывок различного типа
В качестве дополнительного метода борьбы с АСПО, в НГДУ «ЛН» на 77,9% осложненного фонда скважин, эксплуатируемых УШГН, используются промывки различного типа (дистиллятом в комбинации с нефтью, МЛ-80Б).
Динамика проведения промывок представлена в таблице 7
Таблица 7. Динамика проведения промывок
Виды промывок
|
Годы
|
|
|
1997
|
1998
|
1999
|
10 месяцев
|
|
|
|
|
|
2000
|
2001
|
|
Всего промывок,
- дистиллят + нефть
|
1516
745
|
1684
1174
|
1289
625
|
1128
546
|
938
551
|
|
|
В качестве растворителя используется нефтяной дистиллят, как собственного производства, так и получаемый в ОЭ НГДУ «Татнефтебитум».
Более 58% всех проведенных в 2004 году обработок составили промывки дистиллятом в комбинации с нефтью. Содержание нефти в растворе при этом составляет от 20 до 50%. Выбор концентрации осуществляется технологическими службами нефтепромыслов с учетом скважинных условий.
Всего промывками охвачено 484 скважины с периодичностью промывок 2-3 раза в год. Объем разовой нефтедистиллятной обработки составляет в среднем 8 м3.
3.2.4.2 Гидравлический расчет промывки скважины нефтедистиллятной смесью
Исходные данные:
Скважина №1828А,
Н забой = 1620 м - искусственный забой,
Диаметр эксплуатационной колонны Dэкс. к =146 мм,
Диаметр НКТ dHKT = 73 мм,
Диаметр штанг ШТ. = 22 мм,
НН2Б - 44,
Плотность дистиллята ?Д = 707 кг/м3,
Q = 8 м3, В=0%.
Техника для промывки:
ЦА - 320; поршня = 100 мм; = 180 л/с
Производительность агрегата:
1 скорость - 1,4 л/с 2 скорость - 2,55 л/с
3 скорость - 4,8 л/с 4 скорость - 8,65 л/с
1. Расчет гидравлического сопротивления при движении дистиллята в кольцевом пространстве.
P1 = ?? (HHKT ? ?Д)/(Dэкс.к - dHKT) х (vн2/2), ?a (1)
где: - коэффициент трения, = 0,035;
ННКТ - длина колонны НКТ, м;
v н - скорость нисходящего потока жидкости, м/с;
?Д - удельный вес дистиллята, кг/м3;
Dэкс. к - диаметр эксплуатационной колонны, м;
dHKT - диаметр НКТ, м;
При работе на 1 скорости:
Р1 = 0,035·(1450·707)/(0,146 - 0,073) х (0,172/2) = 0,0071?106 Па;
на 2 скорости:
Р1 = 0,035·(1450·707)/(0,146 - 0,073) х (0,372/2) = 0,0339?106 Па;
на скорости 3:
Р1 = 0,035·(1450·707)/(0,146 - 0,073) х (0,532/2) = 0,0696?106 Па;
на скорости 4:
Р1 = 0,035·(1450·707)/(0,146 - 0,073) х (1,032/2) = 0,263?106 Па.
2. Гидравлическое сопротивление по уравновешиванию столбов жидкости в НКТ и колонне:
P2 = (?н - ?Д)?g ?ННКТ, (2)
где: ?н - плотность нефти.
С достаточной точностью для расчетов
P2 = (820 -707)?9,81?1450 = 1,607 ?106 Па
3. Гидравлическое сопротивление в трубах НКТ:
Р3 = ?НКТ? ННКТ??Д ? v 2в/[2 (ВН - ШТ.)] (3)
где: - коэффициент, учитывающий потери на местных сопротивлениях при движении дистиллята в НКТ,
=1,1;
НКТ - коэффициент трения в НКТ, НКТ = 0,04;
ВН - внутренний диаметр НКТ, м;
ШТ. - диаметр штанг, м;
v в-скорость восходящего потока, м/с;
на 1 скорости:
Р3 = 1,1·0,04·1450·707·0,4 2/[2·(0,062 - 0,022)] = 0,09·10 6 Па
на 2 скорости
Р3 = 1,1·0,04·1450·707·0,8 2/[2·(0,062 - 0,022)] = 0,361·10 6 Па
на скорости 3
Р3 = 1,1·0,04·1450·707·1,6 2/[2·(0,062 - 0,022)] = 1,443·10 6 Па
на скорости 4
Р3 = 1,1·0,04·1450·707·2,91 2/[2·(0,062 - 0,022)] = 4,775·10 6 Па
Гидравлические сопротивления на выходе агрегата ЦА-320 при обратной промывке ничтожно малы, при расчете их не используют.
5. Давление на выкиде насоса:
Рв = Р1+ Р2+ Р3; (4)
На 1 скорости:
Рв = 0,0071?10 6 + 1,607?10 6 + 0,09·10 6 = 1,704·10 6 Па;
На 2 скорости:
Рв = 0,0339?10 6 + 1,607?10 6 + 0,361·10 6 =2,002·10 6 Па;
На 3 скорости:
Рв = 0,0696?10 6 + 1,607?10 6 + 1,443·10 6 =3,120·10 6 Па;
На 4 скорости:
Рв = 0,263?10 6 + 1,607?10 6 + 4,775·10 6 =6,645·10 6 Па.
6. Рассчитываем мощность насоса:
N = Pв· Q/?, (5)
где ? - К.П.Д насоса, ? = 0,65;
на 1 скорости:
N =1,704·10 6 Па?1,4/0,65 = 3,67 кВт;
на 2 скорости:
N =1,704·10 6 Па?2,55/0,65 = 6,68 кВт;
на 3 скорости:
N =1,704·10 6 Па?4,8/0,65 = 12,58 кВт;
на 4 скорости:
N =1,704·10 6 Па?8,65/0,65 = 22,68 кВт.
7. Использование максимальной мощности:
К = (6),
где максимальная мощность насоса mах = 130 кВт;
на 1 скорости:
К = 3,67·100/130 = 2,82%;
на 2 скорости:
К = 6,68·100/130 = 5,14%;
на 3 скорости:
К = 12,58·100/130 = 9,68%;
на 4 скорости:
К = 22,68·100/130 = 17,45%.
8. Скорость подъёма дистиллята в Н.К.Т.
v п =v в (7),
на 1 скорости v п = 0,4 м/с
на 2 скорости v п = 0,8 м/с
на 3 скорости v п = 1,6 м/с
на 4 скорости v п = 2,91 м/с
9. Продолжительность подъёма дистиллята в НКТ с разрыхлением парафина и его выносом:
t =HHKT/ v п (8),
на 1 скорости:
t =1450/0,4 = 3625 сек. = 60,42 мин.;
на 2 скорости:
t =1450/0,8 = 1812,5 сек. = 30,21 мин.;
на 3 скорости:
t =1450/1,6 = 902,25 сек. = 15,10 мин.;
на 4 скорости:
t =1450/2,91 = 498,28 сек. = 8,30 мин.
В НГДУ «ЛН» применяется для промывки скважин нефтедистиллятной смесью комплекты из агрегата ЦА-320 на базе КрАЗ-257 и автоцистерны на базе КамАЗ - 5220 емкостью 8 м3.
Из гидравлического расчета промывки скважины видно, что оптимальный режим работы агрегата осуществляется на 3 скорости, т. к. при этом режиме происходит наилучшее вымывание парафина с НКТ и соблюдаются технические условия безопасности работы с горючим материалом - давление выкида насоса меньше или равно 7 МПа.
Из условий наименьших гидравлических сопротивлений промывку желательно начинать на 1 скорости, производительностью 1,4 л/с, с постепенным наращиванием расхода (т.е. переходом на 2-3 скорости)
Продолжительность промывки на 3 скорости (объём 8 м3) составит 15,10 минут. При окончании промывки в обратной последовательности опускаемся до 1 скорости и заканчиваем промывку.
3.2.4.3 Применение ингибиторов различного типа
Наиболее эффективным методом борьбы с парафином является химический метод, который основан на добавке в поток жидкости при помощи агрегатов ЦА 320 М и АКПП -500, ДРС и ДРП-1, а также УДЭ и УДС, химических реагентов способных гидрофилизации стенок труб, увеличению числа центров кристаллизации парафина в потоке, повышению дисперсности частиц парафина в нефти.
Такими растворителями могут быть водо- и нефтерастворимые ПАВ.
Существует множество типов отечественных и импортных ингибиторов для предотвращения и удаления отложений парафина. Большинство реагентов способствует так же предупреждению образования или разрушению водонефтяных эмульсий. Наиболее эффективные реагенты СНПХ - 7202, 7204, 7400. На месторождениях АО «Татнефть» широко применяется ингибитор для предотвращения и удаления отложений парафина СНПХ-7215, который закачивается в затрубное пространство скважины при помощи агрегатов УЭД и УДС.
Наибольшее распространение на промыслах НГДУ «ЛН» получил ингибитор СНПХ-7212 М, который закачивается в затрубное пространство скважин при помощи устьевых дозаторов УЭД и УДС из расчета 100-200 г./т нефти.
Ингибиторы парафиноотложений можно дозировать в скважины при помощи глубинных дозаторов ДСИ-107. Скважинный дозатор ДСИ-107, разработан ТатНИПИнефти, предназначен для подачи водо-нерастворимых ингибиторов на приём штангового насоса. Дозатор может, применятся в скважинах с обводненностью продукции не менее 10% при температуре рабочей среды от 283 до 373 К (10 - 1000С). Плотность применяемого ингибитора должна быть ниже плотности воды не менее чем на 50 кг/м3, а кинематическая вязкость - не более 450 м2/с. Дозатор обеспечивает непрерывную подачу химреагента в пределах от 0,1 до 40 л/сут.
Эксплуатация дозатора состоит в следующем: определяются необходимый объём химреагента, длина колонны НКТ для размещения ингибитора и диаметр втулки дозатора для установления режима его работы. На скважину завозят расчетное количество ингибитора и НКТ. Из скважины извлекается насосное оборудование.
Спускается в скважину колонна НКТ расчетной длины, нижний конец которой снабжен заглушкой и пробкой.
Определяется плотность ингибитора (денсиметром) и вязкость его (вискозиметром) при температуре среды на глубине подвески дозатора в скважине, содержание воды в продукции скважины по данным предыдущей эксплуатации скважины.
При условии соответствия параметров раствора ингибитора расчетным, химреагент заливается в колонну НКТ.
Помещается втулка в камеру и заворачивается корпус в корпус. Присоединяют дозатор к колонне НКТ, предварительно ввернув трубку в нижний конец гидролинии, и устанавливают фильтр на нижнем конце нагнетательной гидролинии. Присоединяют насос к дозатору.
Спуск штангового насоса с дозатором в скважину производится в обычном порядке на необходимую глубину.
Подъём оборудования, и извлечение его из скважины производится в порядке, обратном спуску. При этом для подъёма труб без жидкости необходимо слить их содержимое, сбив полую пробку сбрасыванием металлического лома в колонну НКТ после отсоединения от нее дозатора.
Работу дозатора в скважине следует контролировать по изменению дебита скважины, величине нагрузки на головку балансира СК, химическими анализами устьевых проб добываемой жидкости.
Длину колонны НКТ для заливки раствора ингибитора целесообразно подобрать с таким расчетом, чтобы повторная заправка химреагентом производилась при очередном текущем ремонте скважины.
В зимнее время на ряде удаленных скважин применяются обработки ингибитором парафиноотложения ТНПХ - 1А в объеме 20-30 литров на скважину с периодичностью 1 раз в месяц.
3.2.5 Тепловые методы, применяемые в НГДУ «ЛН» для борьбы с отложениями АСПО
Если интенсивность отложения парафина невелика, то при каждом подземном ремонте поднимают трубы на поверхность и удаляют из них парафин пропариванием с помощью ППУ.
Очистка скважин, оборудованных ШГН от парафина производится за счет тепловой энергии пара, закачиваемое в затрубное пространство скважин. При этом происходит расплавление парафина находящегося в НКТ и вынос его из скважины. Настоящая технология предусматривает соблюдение следующих требований:
- периодичность очистки и количество ППУ корректируется старшим технологом промысла;
- очистка скважины от парафина при работающем СГН, при остановленном из-за отложений парафина;
- закачка пара в затрубное пространство производится после предварительного прогрева манифольда до температуры 100-150 0С;
- при очистке от парафина заклиненных скважин полированный шток устанавливается в верхнее положение, а головка балансира в нижнее положение. После того, как шток уйдет вниз, начинается попытки расхаживания штанговой колонны.
В настоящее время в НГДУ «ЛН» стремятся отказаться от тепловых методов борьбы с АСПО из-за высокой энергоемкости.
Экспериментальные исследования и расчеты распределения температуры по стволу скважины при проведении горячей промывки при помощи АДП показывают, что при глубине спуска насоса, равной 1200 метров, температура, необходимая для расплавления парафина (30-400С) достигает глубины 400-450 метров. Особенно затруднена промывка через насосы малого диаметра (28-32 мм) из-за малого проходного сечения в клапанных узлах.
Для снижения затрат и повышения эффективности горячих промывок насосного оборудования в компоновку колонны НКТ на глубине около 500 метров включают обратный клапан.
В существующих условиях передвижные парогенераторные установки применяются редко и только в тех случаях, где использование других методов невозможно по технологическим причинам.
3.2.5.1 Расчет потерь теплоты по стволу скважины при паротепловой обработке
Исходные данные: диаметр НКТ d = 0,062 м; суммарный коэффициент теплопередачи К = 666,2 кДж/м2Кч; средний коэффициент теплопроводности горных пород ? = 1,02 кДж/мКч; время прогрева t = 3 час.; потеря теплоты в породе в функции времени за время прогрева f(?) = 3,78; температура рабочего агента (пара) на устье скважины То = 468 К; среднегодовая температура воздуха 0 = 275 К; глубина интервала закачки рабочего агента Н = 1300 м; геотермический градиент = 0,0154 К/м;
1. Определим потери теплоты по стволу скважины
Q = 2?rK?/[?+rKf(?)]·[(To-0) H - ?H 2/2] (9)
Q = 2·3,14·0,031· 666,2·1,02/(1,02+0,031·666,2·3,78)·[(468 - 275)·1300 - (0,0154·13002)/2] = 400000 кДж/ч. = 400 МДж/ч;
2. Суммарные потери теплоты за время прогрева:
Qc = Q·t; (10)
Qc = 400·3 = 1200 МДж = 1,2 ГДж;
3. Общее количество теплоты подведенное к скважине:
Q' = i·G (11)
Где i - энтальпия пара при температуре 468 К и давлении 1,2 Мпа,
i = 2820 кДж/кГ; G - массовый расход закачиваемого пара, G = 4200 кГ;
Q' = 2820·4200 = 11844000 кДж = 11,844 ГДж;
4. Определяем количество теплоты дошедшей до забоя;
Q'' = Q' - Qc; (12)
Q'' = 11,844 - 1,2 =10,644 ГДж;
5. Потери теплоты составляют:
? = Qc·100%/Q' (13)
? = 1,2·100%/11,844 = 10,13%.
В настоящее время в НГДУ «ЛН» стремятся отказаться от тепловых методов борьбы с АСПО из-за высокой энергоемкости.
3.3 Техника и оборудование, применяемое для депарафинизации скважин в условиях НГДУ «ЛН»
Для депарафинизации скважин в НГДУ «ЛН» применяют различное оборудование. Краткое их описание и технические характеристики приведены ниже.
Наиболее часто применяют для депарафинизации скважин метод промывки. При промывке микробиологическим раствором, нефтедистиллятной смесью, дистиллятом используются автоцистерны и промывочные агрегаты.
Доставка промывочного раствора на скважину осуществляется в автоцистернах ЦР-7АП, АЦН - 7,5-5334, АЦН-11-257, АЦ-15-5320/8350, АЦ-16П.
Таблица 9 Техническая характеристика автоцистерн
Автоцистерна
Транспортная база
Грузоподъемность, т
Наибольшая скорость передвижения с полной нагрузкой, км/ч
Тяговый двигатель-четырёхконтактовый дизель
Номинальная мощность
(при п=2100 мин-1), кВт
Вместительность цистерны
Центробежный насос
Подача (дм3/с) при напоре, м 70
48
Время заполнения жидкостью, мин
Наиб. мощн, потреб. насосом, кВт
Условн. диам. линии, мм
всасывающей
напорной
Всасывающее устройство
Высота всасывания, м
Рабочий агент
Размеры, мм
длина
ширина
высота
Масса, кг
полная
комплекта
|
АЦН-11-257
КрАЗ-257Б1А
12
68
ЯМЗ-238
176,5
11
9
9600
2500
2860
22600
11040
|
АЦН - 7,5-5334
МАЗ-5334
7,2
85
ЯМЗ-236
132
7,5
12,5
21
6
15
100
50
Эжектор
5
6950
2500
2870
15325
7450
|
ЦР-7АП
КрАЗ-255
7,5
71
ЯМЗ-238
176,5
7,5
8590
2500
3070
19035
10980
|
|
|
Для промывки скважин применяются самоходные насосные агрегаты: цементировочный агрегат ЦА-320М, насосные установки УН1-100х200,
УН1Т-100х200. Все агрегаты имеют трубки высокого давления с цилиндрической резьбой для быстрой сборки и разборки нагнетательной линии.
Таблица 10 Техническая характеристика ЦА-320 М
Монтажная база
Силовая установка:
марка
тип двигателя
Наиб.мощн. при частоте вращ. вала дв-ля 2800 мин-1, л.с.
Насос марки
Наибольшая подача насоса, л/с.
Наибольшее давление, МПа
Водопадающий насос
Наибольшая подача, л/с.
Наибольшее давление, МПа
Объём мерной ёмкости, м3
Диам.проходн. сечения коллектора, мм
приёмного
нагнетательного
Вспомогательный трубопровод
число труб
общая длина, м
Масса агрегата, кг
без заправки
заправленного
Габаритные размеры, мм
|
КрАЗ-257
5УС-70
ГАЗ-51
70
9Т
23
32
1В
13
1,5
6,4
100
50
6
22
16970
17500
10425х2650х3225
|
|
|
3.4 Техника и оборудование при паротепловой обработке
При паротепловой обработке используются специальная техника и оборудование, парогенераторные установки: отечественная ППГУ-4/120М с максимальной производительностью пара 4 т/ч и рабочим давлением 12 МПа, заграничные «Такума» и КК.
Парогенераторная установка предназначена для выработки пара. Котлоагрегаты установок могут работать на природном газе или жидком топливе. Для предупреждения образования накипи на поверхности нагрева сырую воду перед подачей в котел осветляют и обессоливают в специальных фильтрах.
Таблица 11 Техническая характеристика парогенераторной установки ППГУ - 4/120М
Теплопроизводительность по отпускаемому пару, кВт/ч
Давление на выходе из парогенератора, мПа
максимальное
рабочее
Давление пара на выходе из установки. МПа
Степень сухости пара, %
Расход пара на скважину, кг/с
Установленная электрическая мощность, кВт
Вместимость осн. топливного бака, л
Вместимость бака воды. л
Метод деаэрации
Масса установки, кг
Масса блока парогенератора, кг
Габариты, мм
парогенератора
водоподготовки
|
2,32
13,2
6-12
0-12
80
0,55-1,11
75
1000
5000
термический
39700
29500
12080х3850х3200
6250х3850х3200
|
|
|
Установка ППУА-1200/100
Предназначена для депарафинизации скважин, промысловых и магистральных нефтепроводов, замороженных участков наземных коммуникаций в условиях умеренного климата. Можно использовать так же при монтаже и демонтаже буровых установок и при прочих работах для отогрева оборудования.
Включает в себя парогенератор, водяную, топливную и воздушную системы, привод с трансмиссией, кузов, электрооборудование и вспомогательные узлы. Оборудование установки смонтировано на раме, закрепленной на шасси автомобиля высокой проходимости КрАЗ-255Б или КрАЗ-257, и накрыто металлической кабиной для предохранения от атмосферных осадков и пыли.
Привод основного оборудования осуществляется от тягового двигателя автомобиля, управление работой установки - из кабины водителя.
Таблица 12 Техническая характеристика ППУА - 1200/100
Монтажная база
Максимальная температура 0С
Максимальное давление пара, МПа
Применяемое топливо
Максимальный расход топлива, кг/ч
Ресурс работы установки (по запасу воды на максимальной производительности) ч
Масса (с заправочными емкостями), кг
|
Шасси авт. КрАЗ 255Б или КрАЗ 257
310
10
Дизельное
83,2
3,5
19200 или 18380
|
|
|
Агрегаты АДПМ
Предназначены для депарафинизации скважин горячей нефтью. Агрегат, смонтирован на шасси автомобиля КрАЗ 255Б1А, включает в себя нагреватель нефти, нагнетательный насос, системы топливо и воздухоподачи к нагревателю, систему автоматики и КИП, технологические и вспомогательные трубопроводы.
Привод механизмов агрегата - от двигателя автомобиля, где размещены основные контрольно- измерительные приборы и элементы управления.
Таблица 13 Техническая характеристика агрегатов АДПМ-12/150 и 2АДПМ-12/150
Подачи по нефти м3/ч
Максимальная температура нагрева
нефти 0С
безводной
Рабочее давление пара на выходе. МПа
Теплопроизводительность агрегата гДж
|
АДПМ-12/150
12
150
122
13
3,22
|
2АДПМ-12/150
12
150
122
13
3,22
|
|
|
Нефть, подвозимая в автоцистернах, закачивается насосом агрегата и прокачивается под давлением через нагреватель нефти, в котором она нагревается до необходимой температуры. Горячая нефть подается в скважину, где расплавляет отложения парафина и выносит их в промысловую систему сбора нефти
3.5 Расчет на прочность стеклопластиковых штанг
С целью определения нагрузок, возникающих в точке подвеса штанг, произведём расчет на прочность комбинированной колонны из стальных и стеклопластиковых штанг. Расчет будем вести согласно «Методики расчета колонны штанг из композиционного материала для ШСНУ», разработанной ВНИИнефтемаш 24.07.1994.
Исходные данные для расчета:
Номер скважины №1696
Глубина подвески насоса Ннас = 1200 м
Длина хода сальникового штока = 0,9 м
Число качаний балансира п = 5 мин-1
Средняя масса 1 м колонны СПНШ тспнш = 1,05 кг
Средняя масса 1 м колонны стальных штанг тст = 2,35 кг
Диаметр плунжера Дпл = 32 мм
Диаметр штанг шт = 19 мм
Внутренний диаметр НКТ Двн = 62 мм
Плотность жидкости ж = 1090 кг/м3
1. Для вычисления максимальной нагрузки в точке подвеса штанг Ртах воспользуемся формулой Слоннеджера
Ртах=(Ршт + Рж)*(1 + *п/137), Н (20)
где: Ршт - вес колонны штанг, Н
Рж - вес столба жидкости, Н
- длина хода сальникового штока, м
п - число ходов, мин-1
2. Вычислим вес колонны штанг Ршт
Ршт= Ннас**(тспнш* + *тст)= 1200*9,81*(1,05 *0,5 + 0,5 *2,35) = 20012,4 Н
3. Найдем вес столба жидкости Рж
Рж=пл*Ннас* ж * (21)
где: пл= /4*Дпл2=/4*(32*10-3) 2=8,01*10-4 м 2
Рж=8,01*10-4*1200*1090 *9,81=10314,5 Н
Вычислим Ртах;
Ртах=(20012,4 + 10314,5)*(1 + 0,9 *5/137)=31323 Н
4. Минимальное усилие в точке подвеса штанг при ходе вниз
Рт1п=Ршт1 (1 - *п/137), Н (22)
где: Ршт1 - вес колонны штанг в жидкости
Ршт1=Ннас** (*1спнш+ *1ст) (23)
здесь: 1спнш - вес 1 м СПНШ в жидкости
1ст - вес 1 м стальных штанг в жидкости
Ршт1=1200*9,81*(*0,71+ *2,09)=16480,8 Н
Рт1п=16480,8*(1 -0,9*5/137)=15939,5 Н
5. Для определения напряжений, действующих в точке подвеса штанг, воспользуемся следующими формулами:
шт=/4*шт2= 0,785*(19*10-3)2= 2,84*10-4 м2 (24)
тах= Ртах/ шт = 31323/2,44*10-4=110,3 мПа (25)
т1п= Рт1п/ шт = 15939,5/2,84*10-4=56,1 мПа (26)
а=(тах -т1п)/2= (110,3-56,1)/2=27,1 мПа (27)
пр= = = 54,7 Мпа (28)
Как видно из вычислений, приведенное напряжение, действующее в точке подвеса штанг равно 54,7 МПа.
Так как по предельно допустимым приведенным напряжениям для стеклопластика у нас нет значений, то воспользуемся минимальным значением предельно допускаемых приведенных напряжений для стали марки 40. В пользу стеклопластиковых штанг говорит также, что разрушающее напряжение при растяжении у них больше, чем у стальных: 760 МПа у стеклопластика и 610 МПа у стали.
пр=70мПа - приведенное напряжение для стали
Полученное пр=54,7 мПа свидетельствует о возможности использовать в качестве материала для штанг стеклопластик.
Для приведения эксперимента было подобранно 9 скважин. Для определения эффективности использования стеклопластиковых штанг скважины были оборудованы счетчиками активной и реактивной электрической мощности.
Ниже в таблице №14 приведены результаты расчетов.
Таблица. 14 Результаты анализа работы СПНШ
Нагрузка на головку балансира кН
|
1696
|
9288А
|
15470
|
12428а
|
26769
|
26504
|
16942
|
24356
|
26480
|
|
Стеклопластик
Стек+сталь
Сталь
Потр. мощн с учетом веса штанг, кВт
Стеклопластик
Стек+сталь
Сталь
Умень. веса%
Умень. потребляемой мощности
|
21,4
31,3
38,5
18,3
23,2
33
|
20,5
28,1
35,9
17,1
20,6
24,2
22
19
|
10,6
12,7
18,5
2,9
3,3
4,5
31
26
|
21,6
29,2
37,8
18,2
22,4
32,9
22,7
31,4
|
17,5
24,1
30,6
12,6
17,6
24,6
21
28
|
12,6
17,1
27,9
5,6
7
10,5
38
32
|
17,1
22,1
29,9
10,3
11,8
14,3
26,1
17,5
|
22,5
33,3
39,4
18,5
24,6
33,1
15,4
27
|
11,9
15,7
26,5
3,9
4.8
7,3
40
34
|
|
|
Сравнивая результаты можно сделать вывод, что нагрузка на головку балансира станка-качалки уменьшилась в среднем на 20-25% при условии комплектации колонны штанг из стеклопластика и стали.
3.6 Выбор оборудования для подачи реагента (ингибитора)
Существуют два основных способа подачи реагента в обрабатываемую систему: непрерывное (периодическое) дозирование и разовая обработка.
Наиболее эффективным способом является непрерывное дозирование, обеспечивающее постоянный контакт реагента с обрабатываемой системой и частично предупреждающее образование АСПО. Однако этот способ требует обвязки специального оборудования на устье каждой скважины (насос - дозатор, емкость для реагента, поршневой насос для смешения, манифольд и др.).
Реагент в затрубное пространство постоянно подается устьевыми дозаторами УДЭ и УДC конструкции НПО Союзнефтепромхим и СКТБ ВПО Союзнефтемашремонт.
УДЭ и УДC можно применять также для борьбы с солеотложением, коррозией оборудования нефтяных скважин и внутрискважинной деэмульсации нефти.
Электронасосная дозировочная установка УДЭ в зависимости от дозировочного насоса имеет четыре типоразмера: УДЭ 0,4/6,3; УДЭ 1/6,3; УДЭ 1,6/6,3; УДЭ 1,9/6,3. Установки комплектуются специальными дозировочными насосами: НД 0,4/6,3 К14В; НД 1/6,3 К14В; НД 1,6/6,3 К14В; НД 1,9/6,3 К14В. Они обеспечивают максимальные подачи реагента 0,4; 1; 1,6 и 1,9 л/ч при максимальном давлении нагнетания 6,3 МПа. Потребляемая мощность насоса 0,5 кВт, масса 32 кг.
Установка имеет бак на 450 л; габаритные размеры установки 1230х690х1530 мм, масса 220 кг, рабочая температура 223 - 318 К.
Принцип работы УДЭ заключается в следующем. Реагент из бака 5 через фильтр 6 по всасывающему трубопроводу 11 поступает в плунжерный насос - дозатор 13 и по нагнетательному трубопроводу 14 подается в затрубное пространство скважины. Подача регулируется изменением длины хода плунжера.
Наибольшее число установок эксплуатируется в ПО «Татнефть». Дозировочные установки изготавливаются Лениногорским заводом «Нефтеавтоматика», а дозировочные насосы - Свесским насосным заводом.
Рис. 4 Дозировочная установка УДЭ
1 - дозировочный блок, 2 - электроконтактный манометр, 3 - указатель уровня, 4 - заливная горловина, 5 - бак, 6 - фильтр, 7 - рама, 8 - сливной вентиль, 9, 10, 15 - вентили, 11 - всасывающий трубопровод, 12 - обратный клапан, 13 - электронасосный агрегат, 14 - нагнетательный трубопровод, 16 - кожух
Комплектная дозировочная установка УДС с приводом от станка - качалки располагается на СК. Её нагнетательный трубопровод присоединяется к затрубному пространству скважины, а рычаг дозировочного насоса посредством гибкой тяги к балансиру СК. Подача устанавливается регулятором длины хода плунжера насоса и изменением мест крепления тяги к рычагу насоса и к балансиру СК. Подача дозировочного насоса составляет 0,04-0.63 л/с; давление нагнетания 6,3 МПа; вместимость бака 250 л, габаритные размеры 1500 х 730 х 735 мм, масса 145 кг.
По сравнению с другими дозировочными установками УДС-1 обеспечивает большую точность регулирования подачи, имеет более простую конструкцию, она безопасна (снабжена предохранительным устройством и не питается электрическим током) и удобна в эксплуатации.
Рис. 5 Дозировочная установка УДС
1 - указатель уровня, 2 - горловина, 3 - бак, 4 - манометр, 5 - предохранительный клапан, 6 - вентиль, 7 - кожух, 8 - насос дозировочный, 9 - обратный клапан, 10 - трехходовой клапан, 11 - фильтр, 2 - рама
Периодическое дозирование может осуществляться при использовании перечисленного выше оборудования или с помощью специального устройства для ввода реагента под давлением, первый случай имеет те же недостатки что и непрерывное дозирование. Во втором случае затрубное пространство перекрывают задвижкой 3, открывают вентиль 6 для сброса газа из емкости 4, снимают заглушку 5, закрывают вентиль 6, заливают реагент в емкость 4, закрепляют заглушку и открывают задвижку 3; регент поступает в затрубное пространство.
Рис. 6 Принципиальная схема устройства ввода реагента в затрубное пространство по давлением: 1 - устьевая арматура, 2 - выкидная задвижка,
3 - задвижка затрубного пространства, 4 - резервуар для реагента, 5 - заглушка, 6 - вентиль.
При этом способе подачи реагента обслуживание упрощается, но снижается эффективность действия реагента.
4. Охрана труда и противопожарная защита
4.1 Охрана труда и техника безопасности
При эксплуатации скважин для удаления АСПО применяется паропередвижная установка, при её работе должны выполняться следующие правила безопасности:
- паропередвижная установка (ППУ) на скважине устанавливается от устья на расстоянии не менее 25 метров с наветренной стороны так чтобы обеспечивался обзор для машиниста ППУ;
- обвязка выполняется бесшовными стальными трубами, испытанными на пробное давление Рпр=1,5Рраб;
- при пропаривании арматуры скважин, оборудования и трубопроводов, в которых ожидается повышение давления необходимо установить обратный клапан (непосредственно у установки или на любом стыке магистральных труб);
- на арматуре скважины, подвергаемой пропарке, необходимо предусматривать специальный патрубок с вентилем или задвижкой для подсоединения паропроводов от ППУ;
- при пропарке арматуры скважины, оборудования и трубопроводов надо знать максимальное рабочее давление, допускаемое для данного типа арматуры и не превышать его;
- для подачи пара в насосно - компрессорные трубы, уложенные на мостках, паропровод должен быть оборудован специальным наконечником, который должен соединятся к трубе на резьбе или накидным приспособлением на муфту.
Концы труб должны быть уложены со стороны устья в одной плоскости;
- пропарку с использованием шланга с наконечником, закреплённым на деревянном держаке, производить только наружных поверхностей труб, шланг и другого технологического оборудования;
- подача пара в пропарочные трубы должна быть постепенной до выхода пара из противоположного конца трубы, во избежание появления пробок;
- пуск пара производить только по сигналу с места присоединения паропроводов и после удаления людей на безопасное расстояние;
- пропарка штанг от замазученности и парафина производится с помощью шланга с наконечником, которые закреплены на деревянном держаке длинной не менее 1,5 м;
- очистка и пропарка от замазученности станка - качалки машинист производит с помощью шланга с наконечником прикреплённых к деревянному держаку длинной не менее 2,5 метра. В случае невозможности пропарки балансира из-за высоты, то бригада КРС устанавливает стеллажи или подготавливает лестницу с которой производится пропарка оборудования находящееся на высоте.
При подъёме на высоту свыше 1,5 метра необходимо применять предохранительный пояс от падения;
- разработка паропроводов производится после снижения давления пара до атмосферного и охлаждения труб;
- замазученность и парафин оставшийся на территории скважин и баз необходимо убирать.
При использовании удаления АСПО химическими методами необходимо соблюдать особые меры предосторожности и технику безопасности.
Среди химических реагентов, используемых для борьбы с АСПО, имеются токсичные, взрывоопасные, с низкой температурой вспышки. Поэтому при работе с такими реагентами должны соблюдаться особые меры предосторожности.
На территории (или в помещении) для хранения и применения газового бензина запрещается обращаться с открытым огнем; искусственное освещение должно быть выполнено во взрывобезопасном исполнении.
Ремонтные работы на резервуарах, сосудах должны производиться инструментами, не дающими при ударе искру. Технологическое оборудование и коммуникации для транспортирования газового бензина должны быть заземлены.
Запрещается перекачивание газового бензина при помощи сжатого воздуха. Содержание паров газового бензина в воздухе рабочей зоны должно составлять не более 300 мг/м3.
При разливе бензина облитые части машины должны быть насухо протерты, а пролитый на пол или на землю бензин - засыпан песком. Последний необходимо собрать в отдельную тару и вывезти из территории или помещения. Указанные работы должны производиться в фильтрующем противогазе марки А (коробка коричневого цвета).
Сосуды, смесители, коммуникации, насосные агрегаты должны быть герметичны.
Помещение должно быть снабжено общеобменной механической вентиляцией согласно действующим нормам.
При работе с газовым бензином применяют индивидуальные средства защиты: противогаз и спецодежду.
Запрещается использовать газовый бензин для мытья рук и чистки одежды.
Рабочие места должны быть оборудованы источником острого пара, песком, пенным или углекислотными огнетушителями, кошмой, асбестовой тканью.
Аналогичные меры предосторожности должны соблюдаться и при использовании других углеводородных растворителей.
5. Охрана недр и окружающей среды
5.1 Мероприятия по охране окружающей среды и недр в условиях НГДУ «ЛН»
Республика Татарстан характеризуется высоким промышленным потенциалом, богатыми природными ресурсами; нефтяные месторождения Татарстана расположены на территории 21 административного района республики и 3 районов соседних республик и областей с общей площадью более 30 тысяч кв. км.
В 1997 году для предприятий Татарстана было отчуждено более 34 тыс. га. В последние годы в Татарстане увеличивается доля сернистых нефтей, газов и сероводородсодержащих пластовых вод, что усложняет экологическую обстановку. Разработка залежей вязкой нефти и битума с применением большой гаммы химических реагентов и тепловых методов тоже значительно усугубляют ситуацию. Приведенные данные показывают, на сколько высока ответственность нефтяников в деле охраны природы.
Разработаны методические основы оценки технологической нагрузки, проведено ранжирование территории по антропогенному воздействию на природу. В основу экологических программ были заложены результаты систематических исследований. В них обоснована и сформулирована постановка задачи, состоящей из следующих концепций:
свести до минимума вредное воздействие сопутствующих нефтедобыче процессов нарушения экологии;
добиться управляемости производственных процессов, чреватых экологически негативными последствиями; проводить регенерационные мероприятия, и, по максимуму, восстановить среду нашего обитания до того состояния, которое было характерно для начала разработки нефтяных месторождений.
На территории НГДУ «ЛН» находится много населенных пунктов: города, деревни, рабочие поселки. Вокруг населенных пунктов устанавливаются санитарно-защитные зоны.
Многие из промысловых сооружений расположены в санитарно-защитных зонах населенных пунктов, родников и ручьев. Эти объекты являются потенциальными загрязнителями атмосферы, почв, грунтовых и подземных пресных вод при возможных авариях и разгерметизации. При бурении, добыче, сборе и транспортировке нефти имеет место загрязнение почв и грунтов. Основные площади замазученных земель располагаются обычно вдоль водопроводов, часто вдоль ряда скважин.
Все отходы предприятий по добыче нефти оказывают отрицательные воздействия на объекты окружающей среды и представляют угрозу здоровью населения, проживающего в нефтедобывающих районах. Поэтому на промысловых объектах необходимо более эффективно осуществлять технологические, санитарно-технические и организационные мероприятия по контролю за состоянием окружающей среды. Все эти мероприятия позволяют с наименьшим вредом для окружающей среды добывать и транспортировать нефть, быстро и без осложнений устранять причины и последствия загрязнения. В НГДУ «ЛН» осуществляются работы, направленные на улучшение экологической обстановки на территории деятельности предприятия.
5.2 Охрана атмосферного воздуха
За последние 5 лет выбросы в атмосферу загрязняющих веществ сократились с 22000 тонн до 4500 тонн в год. Это было достигнуто благодаря проводимой определенной работой в этом направлении в НГДУ.
Была проведена реконструкция канализационного хозяйства, на ЛОС и ГТП было ликвидировано 12 накопителей. Пущена в работу установка улавливания легких фракций УЛФ, что позволяет ежемесячно улавливать 500-550 тонн нефти.
Подготовка сточной воды переведена на УКНП на герметизированную систему.
Топливно-энергетический комплекс является основным загрязнителем атмосферного воздуха, на долю которого приходится 87% или 66 000 тонн вредных веществ в год.
По сравнению с 2004 годом валовые выбросы снизились на 21,3%
Таблица 15 Количество источников и объемы выбросов, поступающих в атмосферу от промышленных предприятий
Промыш-
ленные комплексы
|
Кол-во источников выбросов вредных веществ
|
Условно обезврежено вредных веществ
|
Обьем выбросов, тыс м/год.
|
Доля выбросов % от общего
|
|
|
2003
|
2004
|
2005
|
2003
|
2004
|
2005
|
2003
|
2004
|
2005
|
|
|
Топливный
|
4301
|
4653
|
5200
|
29,8
|
25,5
|
21,0
|
97,8
|
92,4
|
66,0
|
87
|
|
Теплоэнерге-
ческий
|
-
|
67
|
66
|
-
|
-
|
-
|
-
|
1,3
|
2,4
|
3,2
|
|
Машиностро-
ительный
|
427
|
354
|
200
|
0,2
|
0,5
|
0,3
|
0,2
|
0,5
|
0,1
|
0,7
|
|
Строительный
|
207
|
309
|
250
|
5,8
|
4,6
|
3,1
|
3,8
|
2,5
|
2,3
|
3,0
|
|
Прочие
|
-
|
-
|
120
|
-
|
1,3
|
0,6
|
-
|
1,3
|
4,6
|
6,1
|
|
Всего по ремонту
|
7191
|
6270
|
5716
|
36,7
|
29,6
|
25,0
|
118,4
|
101,5
|
74,4
|
100
|
|
|
Сокращение выбросов достигнуто за счет уменьшения количества источников выбросов и ввода установок улова легких фракций углеводородов в НГДУ ЛН.
С целью уменьшения воздействия автотранспорта на окружающую среду необходимо:
- осуществить вынос крупных автотранспортных предприятий за черту города;
- наладить производство неэтилированного бензина;
применять нейтрализаторы для выхлопных газов и присадки к моторному топливу;
активизировать перевод автомашин на газовое топливо.
5.3 Охрана вод
Систематические наблюдения за состоянием поверхностных водоемов в нефтедобывающих районах юго-западной республики Татарстан были начаты ТатНИПИнефть в 1969 году. Осуществляются силами химико-аналитических лабораторий УПТЖ и НГДУ. С 1991 года к этой работе были привлечены ТГРУ и КГУ. Под наблюдением находятся все реки и малые речки Лениногорского района. В пробах речной воды ежемесячно (НГДУ) и ежеквартально (УПТЖ) определяют содержание нефти (плавающей и эмульгированной), хлоридов, сульфатов, а так же рН, жесткость, общую минерализацию, потребность в кислороде БПК5, тип и концентрацию ПАВ, нитраты и другие.
В настоящее время на территории нефтепромыслов под наблюдением лаборатории охраны природы находятся 14 речек (ежедневно) и 69 родников (ежеквартально).
Благодаря проведенным в очагах загрязнения подземных вод комплексным эколого-гидрологическим исследованиям, источники загрязнения подземных вод в основном известны.
Разработаны мероприятия и методы предотвращения этих загрязнений.
5.4 Охрана земель
В результате упорядочения и более продуманного размещения сооружений, применение кустового и горизонтального бурения скважин значительно сократится отвод земель под нефтяные объекты. Так в начале 90-х годов под сооружениями и коммуникациями АО «Татнефть» находилось более 55 тыс. га, а в настоящее время -34 тыс. га, хотя фонд пробуренных скважин за этот период возрос в 1,3 раза.
Наряду с сокращением отвода земель за счет применения новых технологий бурения и разработки месторождений, нефтяникам уделяется большое внимание сохранения плодородия почв. В среднем сегодня возвращается прежним пользователям на 1500 га сельхоз. угодий АО «Татнефть».
Длительное время, нередко десятилетиями, хранились в открытых амбарах т.н. нефтешламы, оставшиеся в наследство от прошлого. Для утилизация создано совместное предприятие. Более полумиллиона тонн нефтешламов уже переработаны по технологии, разработанной учеными «ТатНИПИнефть», предприятием «Татойлгаз» совместно с Германией. Эта работа продолжается, а для предотвращения дальнейшего накопления шламов, загрязняющих природную среду, разработана технология без амбарного бурения с использованием передвижных буровых установок.
Из года в год в НГДУ «ЛН» уменьшаются площади нарушенных земель.
Это достигнуто за счет уменьшения аварийности на трубопроводах, а так же большой положительный эффект оказала остановка бригад ПРС, КРС и строительных организаций на период весенней распутицы. Кроме того, большая часть бригад ПРС в НГДУ «ЛН» переведены на колесный ход, что резко позволило уменьшить порчу земель.
Продолжаются работы по охране недр и окружающей среды:
а) Исследование и наращивание цемента за кондуктором;
б) Исследование и герметизация колонн;
в) Физическая ликвидация скважин в санитарно-защитных зонах населенных пунктов рек и ручьев, а так же в зонах питания родников.
Список использованной литературы
1. Акульшин А.И., Бойко В.С. Эксплуатация нефтяных и газовых скважин. М.: Недра, 1989 г.
2. Гиматудинов Ш.К. Справочная книга по добыче нефти. М.: Недра, 1974 г.
3. Государственный доклад о состоянии окружающей природной среды Республики Татарстан. Издательство Природа, 1997 г.
4. Документация НГДУ «Лениногорскнефть»
5. Куцын П.В. Охрана труда в нефтяной и газовой промышленности. М.: Недра, 1987 г.
6. Муравьев В.М. «Эксплуатация нефтяных и газовых скважин» М.: Недра, 1978 г.
7. Юрчук В.А., А.З. Истомин «Расчеты в добыче нефти» М.: Недра, 1997 г.
Страницы: 1, 2
|