бесплано рефераты

Разделы

рефераты   Главная
рефераты   Искусство и культура
рефераты   Кибернетика
рефераты   Метрология
рефераты   Микроэкономика
рефераты   Мировая экономика МЭО
рефераты   РЦБ ценные бумаги
рефераты   САПР
рефераты   ТГП
рефераты   Теория вероятностей
рефераты   ТММ
рефераты   Автомобиль и дорога
рефераты   Компьютерные сети
рефераты   Конституционное право
      зарубежныйх стран
рефераты   Конституционное право
      России
рефераты   Краткое содержание
      произведений
рефераты   Криминалистика и
      криминология
рефераты   Военное дело и
      гражданская оборона
рефераты   География и экономическая
      география
рефераты   Геология гидрология и
      геодезия
рефераты   Спорт и туризм
рефераты   Рефераты Физика
рефераты   Физкультура и спорт
рефераты   Философия
рефераты   Финансы
рефераты   Фотография
рефераты   Музыка
рефераты   Авиация и космонавтика
рефераты   Наука и техника
рефераты   Кулинария
рефераты   Культурология
рефераты   Краеведение и этнография
рефераты   Религия и мифология
рефераты   Медицина
рефераты   Сексология
рефераты   Информатика
      программирование
 
 
 

Заканчивание скважин на примере ООО "Лукойл-Бурение"

Заканчивание скважин на примере ООО "Лукойл-Бурение"

ВВЕДЕНИЕ

Заканчивание является одной из наиболее ответственных стадий в строительстве скважин. Именно цементирование, вторичное вскрытие продуктивных пластов, освоение во многом закладывают будущий дебит скважины. При проведении этих работ необходимо принимать все возможные меры для повышения качества заканчивания скважин.

Материалом для этого курсового проекта послужили данные производственной практики, пройденной летом 2002 года в ЭГЭБ №1 ООО «ЛУКойл-Бурение». Районом деятельности предприятия является площадь в районе города Когалым Ханты-Мансийского АО.

В проекте приводятся необходимые расчеты по цементированию, выбору оснастки эксплуатационной колонны.

Скважина по назначению является экспуатационной, вскрыт продуктивный горизонт,.расположенный в Мегионской свите(2505-2535 м).

Отдельная глава посвящена мероприятиям по технике безопасности и охране окружающей сред при заканчивании и при всем цикле строительства скважин. В проекте также приведена специальная часть, посвященная проблеме анализа качества крепления скважин.

1 ГЕОЛОГИЧЕСКАЯ часть

Таблица 1

Литолого-стратиграфическая характеристика разреза скважины

Глубина залегания, м

Стратиграфическое подразделение

Коэффициент кавернозности в интервале

От

(верх)

До

(низ)

Название

Индекс

0

40

Четвертичные отложения

Q

1,50

40

100

Неогеновые отложения

N

1,50

100

180

Туртасская свита

P3/trt

1,50

180

250

Новомихайловская свита

P3/nm

1,50

250

296

Атлымская свита

P3/atl

1,50

296

430

Тавдинская свита

P2-3/tv

1,50

430

670

Люлинворская свита

P2/llv

1,50

670

750

Талицкая свита

P1/tl

1,30

750

875

Ганькинская свита

К2/gn

1,30

875

1020

Березовская свита

К2/br

1.30

1020

1050

Кузнецовская свита

К2/kz

1,30

1050

1850

Покурская свита

К1-2/pkr

1,30

1850

1950

Алымская свита

К1/alm

1,30

1950

2340

Вартовская свита

К1/vrt

1,30

2340

2570

Мегионская свита

К1/mg

1,30

Таблица 2. Литологическая характеристика разреза скважины

Индекс

Интервал, м

Стандартное описание горной породы: полное название, характерные признаки (структура, текстура, минеральный состав и т.п)

От (верх)

До

(низ)

Q

0

40

Пески кварцевые желтовато-серые, супеси, глины, суглинки серые, темно-серые, присутствуют остатки растительности

N

40

100

Супеси, глины, суглинки серые, темно-серые, алевриты серые тонкослоистые

P3/trt

100

180

Глины зеленовато-серые, алевриты серые тонкослоистые, местами с прослоями песков и бурых углей

P3/nm

180

250

Неравномерное переслаивание глин темно-серых, серых алевритов и мелкозернистых кварц-полевошпатовых песков

P3/atl

250

296

Пески светло-серые, мелко-крупнозернистые, кварц-полевошпатовые. Прослои алевритов, глин и бурых углей

P2-3/tv

296

430

Глины зеленовато-серые, алевролитистые, листоватые. Встречаются пропластки песков

Р2/llv

430

670

В верхней части-глины светло-зеленые, плотные, листоватые. В нижней части-опоки и опоковидные глины серого цвета

Р1/tl

670

750

Глины темно-серые до черных, алевролитистые, плотные с тонкими пропластками и линзами алевролитов

K2/gn

750

875

Глины серые, слабо известковистые, алевритистые, с редкими прослоями мергелей

K2/br

875

1020

Глины серые, слабослюдистые, алевритистые, прослоями опоковидные, встречается глауконит, сидерит

К2/kz

1020

1050

Глины темно-серые, до черных, массивные, однородные

К1-2/pkr

1050

1850

Чередование глин темно-серых, слюдистых, песчаников светло-серых, мелко-среднезернистых и алевролитов серых, слюдистых, тонкослоистых

К1/alm

1850

1950

Верхняя подсвита: аргиллиты темно-серые, слабослюдистые, тонкоотмученные с редкими прослоями песчаников. Нижняя подсвита: глины серые аргиллитистые и песчаники серые, мелко-среднезернистые с глинистым цементом

К1/vrt

1950

2340

Верхняя подсвита: аргиллиты зеленоватые, алевритистые, комковатые и песчаники серые слюдистые. Нижняя подсвита: глины серые алевритистые и песчаники серые, мелко-среднезернистые с глинистым цементом

К1/mg

2340

2570

В верхней части-аргиллиты темно-серые слюдистые, от тонкоотмученных до алевритистых с прослоями песчаников. В нижней части - песчаники серые и светло-серые, мелкозернистые, известковые, крепкие

Таблица 3. Водоносность

Индекс стратиграфи-ческого подразделения

Интервал, м

Тип коллектора

Плотность, кг/м3

Фазовая проницаемость, мкм2

Минерализация, г/л

От

До

Q

0

40

Грануляр

1000

>100

<1,0

P3atl-nm

180

296

Грануляр

1000

>100

<1,0

К1-2pkr

1050

1850

Грануляр

1014

>100

18-22

K1mg

2420

2435

Грануляр

1014

>100

19-23

Таблица 4. Давление и температура по разрезу скважины

Индекс стратигра-фического подразделения

Интервал, м

Градиент давления

Пластовые

Пластового

Гидроразрыва

Горного

Темпе-ратуры, оС

От

До

кгс/см2

кгс/см2

кгс/см2

От

До

От

До

От

До

Q + N

0

100

0,100

0,100

0,0

0,2

0

0,190

3

P3trt

100

180

0,100

0,100

0,2

0,198

0,190

0,190

0

P3nm

180

250

0,100

0,100

0,198

0,198

0,190

0,190

5

P3atl

250

296

0,100

0,100

0,198

0,198

0,190

0,190

8

P2-3tv

296

430

0,100

0,100

0,198

0,196

0,190

0,190

10

P2llv

430

670

0,100

0,100

0,196

0,194

0,200

0,200

15

P1tl

670

750

0,100

0,100

0,194

0,192

0,210

0,210

20

K2gn

750

875

0,100

0,100

0,192

0,19

0,210

0,210

30

K2br

875

1020

0,100

0,100

0,19

0,188

0,215

0,215

35

K2kz

1020

1050

0,100

0,100

0,188

0,186

0,220

0,220

50

K1-2pkr

1050

1850

0,100

0,100

0,186

0,18

0,230

0,230

58

K1alm

1850

1950

0,100

0,100

0,18

0,177

0,230

0,230

65

K1vrt

1950

2340

0,100

0,100

0,177

0,177

0,230

0,230

75

K1mg

2340

2570

0,100

0,100

0,177

0,177

0,230

0,230

83

Нефтегазоносность по разрезу скважины Таблица №5.

Индекс стратиграфического подразделения

Пласт

Интервал,

м

Тип коллектора

Плотность нефти, г/см3

Вязкость нефти в пл. усл. МПа*с

Содержание серы, % по весу

Содержание парафина, % по весу

Параметры растворенного газа

От (верх)

До (низ)

В пласт. условиях

После дегазации

Газовый

фактор, м3/т

Содержание углекислого газа, %

Относительная плотность газа, г/см3

Давление насыщения в пл. усл., МПа

K1mg

БС10

2500

2520

Пор.

0,79

0,87

0,55

0,7

2,2

56

0,15

737

11,6

K1mg

БС11

2550

2560

Пор.

0,76

0,87

0,52

0,7

1,7

54

0,16

733

10,1

Таблица №6

Типы и параметры буровых растворов

Ттип раствора

Интервал, м

Параметры бурового раствора

От (верх)

До (низ)

Плотность, г/см3

УВ, с

ПФ, см3/30 мин

СНС, мгс/см2 через, мин.

Корка, мм

Содержание твердой фазы, %

РН

Минерализация, г/л

Пластич. вязкость, П/с

ДНС, мгс/см2

1

10

Коллоидной (активной) части

Песка

Всего

Глинистый

0

50

1,16-1,18

45-60

<9

20-30

35-40

2,0

6-7

3

9-10

8-9

0,2

0,2-0,3

18-20

Глинистый

50

738

1,16-1,18

40-60

<9

15-25

35-40

2,0

6-7

2

8-9

8-9

0,2

0,2-0,3

17-20

Глинистый

738

1109

1,07-1,10

18-22

<8

1-3

4-9

1,5

2-3

1

4-7

7-8

2-3

<0,1

10-15

Глинитый

1109

2340

1,10-1,14

22-25

<6

3-5

5-10

<1,5

2-3

<1

3-5

7-8

2-3

<0,1

12-15

Малоглинистый

2340

2575

1,08-1,10

20-25

<5

3-5

5-15

0,5

<2

<1

<3

7-9

-

Как можно ниже

8-9

2. ОБОСНОВАНИЕ СПОСОБА ВХОЖДЕНИЯ В ПРОДУКТИВНЫЙ ПЛАСТ И КОНСТРУКЦИИ СКВАЖИНЫ

Так как продуктивный пласт сложен песчаниками коллектор поровый, слабосцементированный, то во избежание попадания песка в скважину принимаем забой закрытого типа, эксплуатационная колонна спущена до подошвы продуктивного пласта, затем проведена перфорация. Данный способ является технологически простым и, что немаловажно, дешевым.

Число обсадных колонн и глубина их спуска определяется количеством интервалов, несовместимых по условиям бурения, которые определяются по графику не совмещенности давлений, графику изменения коэффициентов аномальности пластовых давлений и индексов давлений поглощения с глубиной скважины.

(1)

где РПЛ - пластовое давление;

РПЛ = gradРПЛZ; (2)

В-плотность воды;

Нi- текущая глубина скважины.

Коэффициент поглощения Кп рассчитывается по формуле Итона:

(3)

где - коэффициент Пуассона;

Кг-индекс геостатического давления.

Кг рассчитывается по формулам (1) и (2).

Результаты расчетов приведены в табл. 7.

Таблица №7

Индекс стратиграфического подразделения

Интервал, м

РПЛ, МПа

РПОГЛ, МПа

Ка

Кп

От

До

От

До

От

До

От

До

От

До

От

До

Q + N

0

100

0

1

0

1,74

1,02

1,02

0,45

0,45

1,77

1,77

P3trt

100

180

1

1,8

1,74

3,13

1,02

1,02

0,45

0,45

1,77

1,77

P3nm

180

250

1,8

2,5

3,13

4,34

1,02

1,02

0,45

0,45

1,77

1,77

P3atl

250

296

2,5

2,96

4,34

5,05

1,02

1,02

0,44

0,44

1,74

1,74

P2-3tv

296

430

2,96

4,3

5,05

7,22

1,02

1,02

0,43

0,43

1,71

1,71

P2llv

430

670

4,3

6,7

7,22

11,55

1,02

1,02

0,42

0,42

1,76

1,76

P1tl

670

750

6,7

7,5

11,55

12,35

1,02

1,02

0,37

0,37

1,68

1,68

K2gn

750

875

7,5

8,75

12,35

14,17

1,02

1,02

0,36

0,36

1,65

1,65

K2br

875

1020

8,75

10,2

14,17

16,25

1,02

1,02

0,34

0,34

1,62

1,62

K2kz

1020

1050

10,2

10,5

16,25

16,71

1,02

1,02

0,33

0,33

1,62

1,62

K1-2pkr

1050

1850

10,5

18,5

16,71

30,35

1,02

1,02

0,33

0,33

1,67

1,67

K1alm

1850

1950

18,5

19,5

30,35

30,37

1,02

1,02

0,3

0,3

1,59

1,59

K1vrt

1950

2340

19,5

23,4

30,37

36,45

1,02

1,02

0,3

0,3

1,59

1,59

K1mg

2340

2570

23,4

25,7

36,45

40,03

1,02

1,02

0,3

0,3

1,59

1,59

По результатам расчетов строится совмещенный график безразмерных давлений.

Рис 1. График безразмерных давлений.

Как видно из рис. 1. интервалов, несовместимых по условиям бурения в разрезе скважины нет.

Построим график распределения давлений в скважине при полном замещении бурового раствора пластовым флюидом. Для построения воспользуемся значениями РПОГЛ из

(4)

где Н - плотность пластовой нефти, Н=790 кг/м3;

РПЛ - пластовое давление, РПЛ=25 МПа.

Подставим значения z в выражение (4), и получим две точки для построения графика:

1. z=2535 м: ;

2. z=0 м: .

То есть при заполнении скважины пластовым флюидом она будет до определенного уровня заполнена нефтью, найдем этот уровень подставив значение РНАС в выражение (4) получим:

(от забоя) (5)

Скважина до глубины LН=823,8 м заполнена нефтью, а выше свободным газом. Пересчитаем давление на устье по формуле:

(6)

где РПЛ - пластовое давление, в данном случае РПЛ = РНАС=11,6 МПа;

s - эмпирический коэффициент.

Коэффициент s рассчитывается по формуле:

(7)

где - относительная плотность попутного газа по воздуху, ;

L - глубина скважины, в данном случае L=LН=823,8 м;

z - расчетная глубина, при пересчете на устье z=0 м.

Рис.2. График распределения давлений в скважине при полном замещении бурового раствора пластовым флюидом.

Согласно рис. 2 достаточно двух обсадных колонн, такая конструкция обеспечит достаточную надежность и минимальную стоимость скважины.

Верхние неустойчивые отложения перекроем путем спуска кондуктора до глубины 750 м . При данной глубине спуска, обеспечивается экологическая безопасность на случай нефтегазопроявлениия с 5 % запасом по давлению (kКОНД).

.

Далее ствол обсаживается эксплуатационной колонной до глубины 2575 м (на 5 м ниже подошвы Мегионской свиты).

Как правило, заказчик (ТПП «Когалымнефтегаз») требует обсаживать скважину эксплуатационной колонной с наружным диаметром 146 мм. Исходя из этого условия, рассчитаем диаметры долот для бурения скважины, а также диаметр кондуктора.

Диаметр долота для бурения под эксплуатационную колонну рассчитывается по формуле:

(8)

где -диаметр муфт эксплуатационной колонны, =166 мм;

-зазор между муфтой и стенкой скважины =5-40 мм.

Определим внутренний диаметр промежуточной колонны (кондуктора)по формуле:

(9)

где -зазор между долотом и стенкой кондуктора, =3-5 мм.

.

То есть, для крепления верхних неустойчивых отложений (кондуктора) допускается применение труб диаметром 244,5 мм и толщиной стенки 8,9-10 мм.

Диаметр долота для бурения под кондуктор рассчитывается по формуле аналогичной формуле (4)

Определим глубину спуска кондуктора по стволу (длину кондуктора):

(10)

где l1, l2, h1, h2 -длины по стволу и глубины по вертикали соответствующих участков профиля; =16,84 -максимальный зенитный угол (на участке стабилизации)

l1=90; l2=147;h1=90;h2=144,7;

hконд- глубина спуска кондуктора по вертикали, hконд=750 м.

В кондукторе используем обсадные трубы с треугольной резьбой 244,58,9-Д-ГОСТ-623-80. Практика показывает, что данные обсадные трубы выдерживают необходимые нагрузки.

Принимаем, что башмак эксплуатационной колонны будет спущен на глубину, 2565 м (10 м до забоя скважины). Тогда длина эксплуатационной колонны будет

3. РАСЧЕТ ЭКСПЛУАТАЦИОННОЙ КОЛОННЫ

Расчёт наружных давлений

До затвердевания цементного раствора:

z=0:

z=2205 м:

z=2575 м:

После затвердевания цементного раствора:

z=0:

z=2205 м:

где ПОР - плотность поровой жидкости цементного камня;

z=2575 м:

Расчёт внутренних давлений

При ликвидации открытого фонтанирования с закрытым устьем:

z=0:

z=824 м:

z=2205 м:

z=2575 м:

При опрессовке (колонна опрессовывается после получения момента «стоп»):

z=0: (нормативная величина)

z=2205 м:

z=2575 м:

При продавке:

z=0:

z=2205 м:

z=2575 м:

Расчёт наружных избыточных давлений

Максимальные наружные избыточные давления возникают при окончании продавки цементного раствора.

z=0:

z=2205 м:

z=2575 м:

Расчёт внутренних избыточных давлений:

Максимальные внутренние избыточные давления возникают при опрессовке колонны после ОЗЦ, коэффициент облегчения k=0,25 [2, стр. 15]т.е. (1-k)=0,75.

z=0:

z=2205 м:

z=2575 м:

По результатам расчетов строится совмещенный график внутренних и наружных избыточных давлений.

Выбор типа труб

Определим интенсивность искривления 0 по формуле

(11)

где R1-радиус искривления ствола скважины в интервале набора зенитного угла, R1=500 м.

Страницы: 1, 2


© 2010 САЙТ РЕФЕРАТОВ