бесплано рефераты

Разделы

рефераты   Главная
рефераты   Искусство и культура
рефераты   Кибернетика
рефераты   Метрология
рефераты   Микроэкономика
рефераты   Мировая экономика МЭО
рефераты   РЦБ ценные бумаги
рефераты   САПР
рефераты   ТГП
рефераты   Теория вероятностей
рефераты   ТММ
рефераты   Автомобиль и дорога
рефераты   Компьютерные сети
рефераты   Конституционное право
      зарубежныйх стран
рефераты   Конституционное право
      России
рефераты   Краткое содержание
      произведений
рефераты   Криминалистика и
      криминология
рефераты   Военное дело и
      гражданская оборона
рефераты   География и экономическая
      география
рефераты   Геология гидрология и
      геодезия
рефераты   Спорт и туризм
рефераты   Рефераты Физика
рефераты   Физкультура и спорт
рефераты   Философия
рефераты   Финансы
рефераты   Фотография
рефераты   Музыка
рефераты   Авиация и космонавтика
рефераты   Наука и техника
рефераты   Кулинария
рефераты   Культурология
рефераты   Краеведение и этнография
рефераты   Религия и мифология
рефераты   Медицина
рефераты   Сексология
рефераты   Информатика
      программирование
 
 
 

Многомерная геометрия

Граница отрезка  состоит из двух точек: х = 0 и х =1. Граница квадрата   содержит 4 вершины:

х = 0, у = 0; х = 0, у = 1; х = 0, у = 1; х = 1, у = 1, т. е. точки (0, 0), (0, 1), (1, 0), (1, 1).

Куб  , , содержит восемь вершин. Каждая из этих вершин есть точка (x, y, z), в которой x, y, z заменяются либо нулём, либо единицей. Получаем следующие 8 точек:

(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 1, 0), (1, 0, 1), (1, 1, 1).

Вершинами четырёхмерного куба:  , ,  называются точки (x, y, z, t), у которых x, y, z, t заменяются либо нулём, либо единицей. Таких вершин 16.

Рис. 8

Тогда рёбрами (трёхмерного) куба являются стороны.

 

 Рис. 9

х = 0, у = 0,  (ребро АА1)

, у = 0, z = 1 (ребро АB1)

х = 1, , z = 1 (ребро B1А1) и т. д.


Определение. Рёбрами четырёхмерного куба называется множество точек, для которых все координаты, кроме одной, постоянны (равны 0, либо 1), а четвёртая принимает все возможные значения от 0 до 1.

Прежде всего будем различать четыре группы рёбер: для первой пусть переменной координатой является х (), а y, z, t принимают постоянные значения 0 и 1 во всех комбинациях. Так как существует 8 различных троек из нуля и единицы. Поэтому рёбер первой группы – 8. Рёбер второй группы, для которых переменной является не х, а у, тоже 8. Таким образом, ясно, что всего у четырёхмерного куба 32 ребра. Кроме рёбер у куба есть грани, которые, в свою очередь разделяются на двумерные и трёхмерные грани четырёхмерного куба. У четырёхмерного куба 24 двумерных грани и 8 – трёхмерных (они изображены параллелепипедами (рис. 10)).

4 - мерный куб Рис. 10

§ 6. Геометрия k-плоскостей в аффинном и евклидовом пространствах

Определение k-плоскости

Пусть в n-мерном аффинном пространстве Un зафиксирована произвольная точка А, и в соответствующем линейном пространстве Ln зафиксировано произвольное k-мерное подпространство Lk.

Определение. Множество всех точек М аффинного пространства, для которых АМ  Lk, называют k-мерной плоскостью, проходящей через точку А в направлении подпространством Lk.

Рис. 11, где k = 2

Говорят также, что Lk есть направляющее подпространство этой плоскости. Очевидно, что каждая плоскость определяет однозначно своё направляющее пространство.

Точку М называют текущей точкой плоскости. На рисунке показаны три положения М1, М2, М3 текущей точки М.

Частные случаи k-плоскостей

Если k = 0, то плоскость состоит из одной точки А. Поэтому каждую точку аффинного пространства можно рассматривать как нуль-мерную плоскость.

Одномерная плоскость называется прямой линией.

Плоскость размерности n – 1 называется гиперплоскостью.

При k = n плоскость совпадает со всем пространством Un.

В определении плоскости выделена точка А. Докажем, что в действительности все точки плоскости равноправны.

Обозначим плоскость через Пk и зафиксируем произвольную точку В . Надо доказать, что точка М принадлежит плоскости Пk тогда и только тогда, когда  (т. е. что любая точка М может играть роль А).

Пусть . По определению плоскости . Отсюда и по определению подпространства , поэтому . Обратно, если , то  следовательно, .

Рис. 12

Теорема. Всякая k-мерная плоскость в аффинном пространстве сама является k-мерным аффинным пространством.

Доказательство. Пусть дано аффинное пространство U, которому соответствует линейное пространство L, пусть Пk – плоскость, проходящая через точку А в направлении подпространства Lk. Возьмём в плоскости Пk две произвольные точки M, N . По определению аффинного пространства им соответствует вектор . По определению плоскости векторы АМ и АN принадлежат подпространству Lk.

Следовательно, . Таким образом, каждой упорядоченной паре точек М, N плоскости Пk, поставим в соответствие вектор MN из k-мерного пространства Lk. При этом соблюдаются для Пk аксиомы, вытекающие из определения k-мерной плоскости и для всего аффинного пространства U. Теорема доказана.

Замечание. Если плоскость проходит через начало аффинной системы координат в направлении подпространства Lk, то совокупность радиус-векторов её точек образует подпространство, по определению совпадающее с подпространством Lk.

Пусть в аффинном пространстве U даны точки А0, А1,…, Аk (в числе k + 1). Эти точки находятся в общем положении, если они не принадлежат ни одной (k –1)-мерной плоскости .

Проверим, что точки А0, А1,…, Аk находятся в общем положении тогда и только тогда, когда векторы А0А1,…, А0Аk линейно независимы (рис. 13), причём безразлично, какую из точек брать в качестве А0 (то есть за начало векторов, идущих из неё в другие точки).

Рис. 13

Из сказанного в этом пункте и из определения плоскости следует, что через систему точек А0, А1,…, Аk, находящихся в общем положении, проходит k-мерная плоскость и притом только одна.

Предположим, что в пространстве Un зафиксирована какая-нибудь аффинная система координат с началом О и базисом е1, е2, …, еn. Рассмотрим плоскость Пk, проходящую через точку А в направлении подпространства Lk.

Будем считать, что точка А имеет координаты р1, р2, …, рn и что Lk задаётся как независимая система векторов q1, q2, …, qk. Тогда радиус-вектор ОМ текущей точки плоскости можно записать в виде

 (6. 1)


где параметры τ1, τ2, …, τk независимо друг от друга пробегают всевозможные числовые значения, а вектор  (рис. 14)

Рис. 14

Разложим вектор q1, q2, …, qk по базису е1, е2, …, еn:

 

Координаты текущей точки М обозначим, как обычно, через (x1, x2, …, xn) и запишем векторное равенство в координатах. В результате получим n числовых равенств.

 (6. 2)

Эти равенства называются параметрическими уравнениями плоскости Пk.

Пример. Пространство, изучаемое в стереометрии, является трёхмерным аффинным пространством. В нём одномерные и двумерные плоскости совпадают соответственно с прямыми линиями и плоскостями, понимаемыми в элементарно-геометрическом смысле. В отличие от пространства, изучаемого в элементарной геометрии, в аффинном пространстве не определены метрические понятия: расстояния между точками и длины линий, площади и объёмы фигур, углы и перпендикулярность. При исследовании фигур в аффинном пространстве изучаются лишь те геометрические свойства, которые не зависят от метрических понятий.

2. Уравнения k-плоскости по k+1 точкам

Если заданы k+1 точек А0(х0), А1(х1), …, Аn(хn) и векторы А0Аа = ха х0 независимы, то эти точки определяют единственную k – плоскость, проходящую через них: в этом случае за направляющие векторы этой плоскости можно принять векторы А0Аа и векторное уравнение k-плоскости можно записать в виде

 (6. 3)

Будем называть k-плоскость, определяемую точками А0(х0), А1(х1), …, Аn(хn), k-плоскостью А0, А1, …, Аk.

Случай k = n-1

В дальнейшем будем часто иметь дело с k-поверхностями и k-плоскостями при k = n – 1. Говоря, «поверхность n-пространства» и «плоскость n-пространства», но иметь в виду (n – 1)-поверхность и (n – 1)-плоскость этого пространства. Часто поверхность и плоскость называется соответственно гиперповерхностью и гиперплоскостью.

Поверхность можно задать одним координатным уравнением

 (6. 4)

если координаты xi, удовлетворяющие этому уравнению, можно представить как функции n – 1 параметров t1, t2, …, tn-1, то получим

F(x) = 0. (6. 5)


3. Взаимное расположение плоскостей

3. 1 Пересекающиеся плоскости

Во всём этом пункте размерности плоскостей и подпространств обозначены индексами снизу. Пусть две плоскости Пk и Пl пересекаются, то их пересечением является некоторая плоскость Пm.

 k = l = 2, m = 1 Рис. 15

Замечание 1. Не исключена возможность, что Пm состоит из одной точки (m = 0). Это видно на примере двух пересекающихся прямых или прямой и плоскости (рис. 16).

Рис. 16

В общем случае по одной точке могут пересекаться две плоскости, сумма разностей которых не превышает размерности пространства, например, двумерные плоскости в четырёхмерном пространстве.

Замечание 2. Не исключено и другое, когда одна из двух плоскостей целиком принадлежит другой. Например, , тогда  (рис. 17)

k = m = 1, l = 2

Рис. 17

2) Если плоскости Пk и Пl пересекаются по плоскости Пm, то существует единственная плоскость Пr, размерности r = k + l – m, содержащая Пk и Пl, причём ни в какой плоскости меньшей размерности Пk и Пl не могут одновременно поместиться. Направляющее подпространство Lr плоскости Пr является суммой направляющих подпространств Lk и Ll. Эта сумма является прямой суммой тогда и только тогда, когда Пk и Пl пересекаются по одной точке (m = 0, см. рис. 18).

Рис. 18

В частном случае, когда n = k + l – m, роль плоскости Пr выполняет всё пространство Un (при r = n = 3 см. рис. 15).

3) Если пересекающиеся плоскости Пk и Пl содержатся в какой-нибудь плоскости Пr, то размерность их пересечения . В частности,  для любых двух непересекающихся плоскостей из Un.

4) Если плоскости Пk и Пl проходят через точку А в направлении подпространств Lk и Ll соответственно и если Lk содержится в Ll, то плоскость Пk содержится в плоскости Пl. Если при этом k = l, то Пk совпадает с Пl (также и Lk совпадает с Ll).

Параллельные плоскости

Пусть теперь плоскость Пk определяется точкой А и подпространством Lk, а плоскость Пl – точкой В и подпространством Ll. Будем считать, что .

Определение: Плоскость Пk параллельна плоскости Пl, если .

В этом случае плоскость Пl параллельна плоскости Пk.

Замечание 1. Согласно этому определению включение  является частным случаем параллельности.

Замечание 2. Если Пk параллельна Пl, причём k = l, то Lk совпадает с Ll.

Замечание 3. Убедимся, что при n = 3 частные случаи k = l = 1,

k = l = 2 и k =1, l = 2 согласуются с понятием параллельности прямых и плоскостей, известным из элементарной геометрии (рис. 19)

 а) б) в)

Рис. 19

Пусть в произвольной аффинной системе координат две плоскости П и Пl одинаковой размерности заданы системами линейных уравнений. Пользуясь определением параллельности, нетрудно установить следующее утверждение.

Утверждение. Для того, чтобы П и П’ были параллельными, необходимо и достаточно, чтобы соответствующие однородные системы уравнений были эквивалентны.

В частности, две гиперплоскости параллельны тогда и только тогда, когда в одних и тех же координатах они задаются уравнениями

 и (6. 6)


 (6. 7)

с пропорциональными коэффициентами при переменных:

.

Теорема 1. Пусть в аффинном пространстве Un даны плоскость Пk и точка В. Тогда существует единственная плоскость  размерности k, проходящая через точку В параллельно Пk. Если , то  совпадает с Пk; если точка В расположена вне Пk, то плоскости Пk и  не пересекаются.

Скрещивающиеся плоскости

Определение. Две плоскости называются скрещивающимися, если они не пересекаются и не параллельны.

Известно, что в трёхмерном пространстве U3 две прямые линии, т. е. одномерные плоскости, могут скрещиваться, тогда как прямая линия и двумерная плоскость в U3 скрещиваться не могут. С повышением размерности пространства оно становится более просторным, в результате чего появляется возможность строить в нём скрещивающиеся плоскости разных размерностей, а не только одномерные. Ниже сформулирована теорема 2, содержание которой можно рассматривать как общий приём построения скрещивающихся плоскостей. Именно, пусть в аффинном пространстве Un дана плоскость Пl (l < n). Возьмём произвольную плоскость Пk так, чтобы Пk и Пl не были параллельны и пересекались; плоскость, по которой они пересекаются, обозначим через Пm. Пусть Пr - плоскость наименьшей размерности, содержащая Пk и Пl. Мы знаем, что r = k + l – m.

Теорема 2. Если , то всякая k-мерная плоскость, которая параллельна Пk и не лежит в Пr, скрещивается с Пl.

Следствие. Если целые числа k, l, m, n удовлетворяют неравенствам

, , , то в Un найдутся скрещивающиеся плоскости Пk и Пl с направляющими подпространствами Lk и Ll, пересечение которых  имеет размерность m.

Доказательство теоремы 2. Так как , то плоскость Пr не исчерпывает собой всего пространства Un. Это позволяет взять (с большим произволом) точку С, не лежащую в Пr. Обозначим через  плоскость размерности k, проходящую через точку С, параллельно Пk. Ясно, что  не содержится в Пr и что, выбирая по-разному точку С, мы можем получить любую k-мерную плоскость, удовлетворяющую условию теоремы. (См. рис. 14, на котором k = l = 2, r = 2, n = 4, и трёхмерные плоскости условно изображены в виде параллелепипеда).

 

Рис. 20

Докажем, что плоскости Пl и  скрещиваются. Заметим, что плоскость  не параллельна Пl, так как в противном случае или , или , что противоречит условию расположения плоскостей Пk и Пl.

Теперь докажем, что  и Пl не пересекаются. Проведём через точку С вспомогательную r-мерную плоскость , параллельную Пr. Тогда  и поэтому Пk не может пересечь Пl ибо в противном случае точка их пересечения  принадлежала бы параллельным плоскостям Пr и . Следовательно, скрещивается с Пl. Теорема 2 доказана.

Пусть в n-мерном аффинном пространстве Un даны скрещивающиеся плоскости Пk и Пl с направляющими подпространствами Lk и Ll, причём

, .

Теорема 3. Существует единственная плоскость Пr+1 размерности , содержащая плоскости Пk и Пl.

Доказательство. Возьмём произвольную точку  и зафиксируем произвольную точку ; обозначим через  линейную оболочку вектора  (рис. 16). Допустим, что существует какая-то плоскость , содержащая Пk и Пl; пусть  - её направляющее подпространство. Очевидно, что  должно содержать Lk, Ll и , а следовательно, и сумму этих подпространств. Обозначим эту сумму через Lr+1:

Обратно, если  - любое подпространство, включающее Lr+1, то , проходящая через точку А в направлении , будет содержать Пk и Пl. В самом деле, так как  и, то; так как , то , так как  и , то .


 

Рис. 21

Получим среди всех плоскостей  искомую плоскость Пr+1 минимальной размерности r + 1 в том единственном случае, когда в качестве  берётся Lr+1. Подсчитаем r + 1. С этой целью рассмотрим  и обозначим размерность  через р. По теореме 3 (в n-мерном пространстве L имеются подпространства Lk и Ll, размерности которых соответственно равны k и l. Если их пересечение имеет размерность m, то размерность их суммы Lk + Ll равна r = k + l – m) имеем р = k + l – m.

Покажем, что  есть прямая сумма, поэтому размерность Lr+1 равна р + 1, то есть (r + 1) = (k + l – m) +1.

Для этого достаточно показать, что вектор  не принадлежит пространству . Предположим противное. Пусть . Тогда по определению суммы подпространств существуют векторы х и у такие, что, , . (v) По первой аксиоме аффинного пространства найдётся точка С такая, что , причём . По второй аксиоме аффинного пространства . (vv)

Учитывая (v), (vv), находим, что , так что . Получается, что плоскости Пk и Пl имеют общую точку С, но это невозможно, поскольку плоскости Пk и Пl скрещиваются. Теорема 3 доказана.

Замечание. Рисунок 20 лишь частично иллюстрирует теорему 3. Например, если размерности Пk и Пl больше m и различны между собой, , то, как,

Проведённые выше рассуждения показывают, что плоскости Пk и Пl, о которых идёт речь в теореме 3, не содержатся ни в какой плоскости меньшей размерности, чем r + 1.

Сохраняя обозначения предыдущего подпункта, сформулируем достаточное условие пересечения двух плоскостей.

Теорема 4. Если в Un даны плоскости Пk и Пl, такие, что , где m – размерность пересечения Lm направляющих подпространств Lk и Ll, то Пk и Пl пересекаются.

Доказательство. Исключая тривиальный случай, когда какая-нибудь из данных плоскостей совпадает со всем пространством, имеет

В расположении двух данных плоскостей могут быть лишь три возможности:

либо Пk параллельна Пl;

либо плоскости Пk и Пl скрещиваются;

либо они пересекаются.

Если Пk параллельна Пl, то для размерности m пересечения соответствующих им пространств Lk и Ll имеем m = min (k, l). Теорема доказана.

2. Размерность многообразия k-плоскостей

Найдём размерность Рn,k, многообразия всех k-плоскостей

n-пространства.

Прежде всего заметим, что число параметров, от которых зависят k+1 точек M0, M1, …, Mk n – пространства с линейно независимыми векторами , через которые проходит единственная k-плоскость, равно числу координат, этих точек, т. е. (k +1)n. Далее заметим, что число параметров, от которых зависят те же точки на k-плоскости, равно числу параметров  этих точек, т. е. (k +1)k. Так как в n-пространстве, число параметров, от которых зависят точки  равно сумме числа Рn,k и числа параметров, от которых зависят точки  на k-плоскости, то получим, что

, т. е.

. (6. 7)

 

 § 7. K-параллелепипеды в пространстве

1. Полуплоскости и параллелепипеды

Если в уравнении

 (7. 1)

k-плоскости придавать одному из параметров tb только неотрицательные значения , а остальным параметрам – произвольные действительные значения, мы получим k-полуплоскость, ограничиваемую (k-1)-плоскостью,

 (7. 2)

Если в том же уравнении (7. 1) придать всем параметрам  только значения , мы получим k-параллелепипед с вершинами


;

2-параллелепипеды называются параллелограммами.

Условимся называть k-параллелепипед с вершинами А0, А1, А2, …, А12…k параллелепипедом А0 А1 А2 … А12…k.

На рисунке 22 изображён 3-параллелепипед

А0 А1 А2 А3 А12 А13 А123

и параллелограмм А0 А1 А2 А12.

  а) б)

Рис. 22

2. Грани параллелепипеда

Придавая в уравнении (7. 1) значения  всем параметрам  при , а параметру  - значения  или , мы получим (k - 1)-параллелепипеды, являющиеся гранями k-параллелепипеда. Грани этих (k- 1)-параллелепипедов называются (k - 2)-гранями k-параллелепипеда, грани этих (k–3)-гранями k-параллелепипеда и т. д. Таким образом, k-параллелепипед обладает р – гранями, где р – пробегает значения от 0 до k – 1, 0-грани параллелепипеда совпадают с его вершинами, 1-грани называются рёбрами (при m= 2 - сторонами). На рисунке 22 (а) стороны параллелограмма – четыре отрезка А0 А1, А0 А2, А0 А3, А0 А12, А1 А13, А2 А12, А2 А23, А3 А13, А12 А123, А13 А123, А23 А123; 2-грани - шесть параллелограммов А0 А1 А1 А12, А0 А1 А3 А13, А0 А2 А3 А23, А1 А12 А13 А123, А2 А12 А23 А123, А3 А13 А23 А123.

Число  р-граней k-параллелепипеда равно , где  - число сочетаний из k по р.

3. Объём прямоугольного параллелепипеда

Определим объём прямоугольного k-параллелепипеда, то есть такого k-параллелепипеда, у которого все векторы ра попарно перпендикулярны. Длина любого отрезка прямоугольного k – параллелепипеда называется его измерением.

Объём прямоугольного k-параллелепипеда называется его измерением.

Объём прямоугольного k-параллелепипеда только постоянным множителем отличается от произведения его измерений, т. е. функция  отличается от произведения  измерений прямоугольного параллелепипеда только постоянным множителем .

В дальнейшем будем считать этот постоянный множитель равным 1, то есть будем считать, что объём Vk прямоугольного k –параллелепипеда равен произведению его измерений.

 (7. 4)

4. Объём произвольного параллелепипеда

Сравнивая прямоугольные k-параллелепипед и (k–1)-параллелепипед с объёмами, равному данному k-параллелепипеду и одной из его граней мы получим, что объём Vk k-параллелепипеда равен произведению объёма Vk-1 одной из его (k–1)-граней на расстояние hk между этой гранью и параллельной ей (k–1)-гранью.

 (7. 5)

Если назвать выделенную (k–1)-грань k-параллелепипеда его основанием, а расстояние hk его высотой, то формула (7. 5) показывает, что объём k-параллелепипеда равен произведению объёма его основания на высоту.

Объём Vk k-параллелепипеда, определяемого уравнением , при , определяется соотношением

,

т. е. квадрат объёма этого параллелепипеда равен определителю Грамма, составленному из k векторов ра.

Утверждение очевидно при k =1, когда параллелепипед совпадает с отрезком, определяемым вектором р1, и объём этого параллелепипеда совпадает с длиной этого отрезка , т. е. .

Рассмотрим теперь k-параллелепипед и предположим, что наше утверждение справедливо для его (k – 1)-граней. Рассмотрим его (k – 1)-грань, определяемую уравнением , при  и . Тогда скалярный квадрат векторного произведения  в k-плоскости k-параллелепипеда, равный определителю Грамма, составленному из k–1 векторов  (а < k), равен объёму этой (k – 1)-грани. Так как объём Vk k-параллелепипеда равен произведению объёма Vk-1 этой (k–1)-грани на соответствующую высоту hk , то объём Vk равен

 , (7. 7)

где j - угол между вектором рk и перпендикуляром к (k–1)-грани в k-плоскости k-параллелепипеда.

5. Аффинность k-параллелепипедов

Если даны два произвольных k-параллелепипеда А0 А1… Аk… А12…k и

В0 В1… Вk… В12…k, то системы точек А0, А1, … ,Аk и В0, В1, … ,Вk определяют аффинное преобразование, переводящее первые из этих точек во вторые. Так как при аффинном преобразовании плоскости переходят в плоскости, а параллельные плоскости в параллельные плоскости, это аффинное преобразование переводит весь k- параллелепипед А0 А1… Аk… А12…k в k-параллелепипед В0 В1… Вk… В12…k. Поэтому всякие два k-параллелепипеда аффинны.

Относительный объём k-параллелепипеда, определяемого уравнением  и , при аффинном преобразовании относительные величины преобразуются по формуле, то есть умножается на определитель матрицы этого аффинного преобразования, если k-параллелепипед с объёмом Vk переходит при аффинном преобразовании с матрицей  в k-параллелепипед с объёмом , то

 (7. 8)

Отсюда вытекает, что отношения относительных объёмов k-параллелепипедов не изменяются при аффинных преобразованиях.

Выпуклые многогранники

В этом пункте будем рассматривать действительное k-мерное аффинное пространство , считая, что в нем дана аффинная система координат.

Пусть через некоторую точку  имеющую координаты , проведена прямая в направлении вектора , координаты которого обозначим . Согласно изложенному ранее эту прямую можно задать параметрическими уравнениями

, . (7.9)

.

Пусть на прямой (9) выбраны какие-нибудь точки  и . Соответствующие им значения параметра  обозначим  и . Предположим, что  < .

Определение. Множество точек прямой, удовлетворяющих неравенством   , называется отрезок .

Если точка  имеет координаты , точка  имеет координаты , то в качестве направляющего вектора прямой можно взять вектор . Тогда , и для точки прямой имеем

, причем  = 0 в точке ,  = 1 в точке , так что отрезок  задается теперь неравенствами 0    1. Положим 1  = ,  = . Тогда для точек отрезка  и только для них имеем , , (7.10)

, , .

Точка, в которой , называется серединой отрезка .

Определение. Множество точек действительного аффинного пространства называется выпуклым, если вместе с каждыми двумя своими точками , оно содержит отрезок .

Простейшими примерами выпуклых множеств могут служить: отрезок, плоскость любой размерности, все пространство .

Множество, состоящее из одной точки, и пустое множество также считается выпуклыми.

Из определения следует, что пересечение любой совокупности выпуклых множеств само является выпуклым множеством. В самом деле, если точки , принадлежат пересечению некоторой совокупности выпуклых множеств, то отрезок  принадлежит каждому из них множеств, а значит, и их пересечению.

Пусть в пространстве  дана произвольная гиперплоскость

. (7.11)

Гиперплоскость (11) развивает пространство на две части, называемые открытыми полупространствами. Их точки характеризуются неравенствами

 и  соответственно. (7.12)

Присоединяя к открытому полупространству гиперплоскость (11), мы получим так называемое замкнутое полупространство. Одно из них состоит из точек, координаты которых удовлетворяют неравенствам.

Существенно, что рассматриваемое пространство является действительным.

Каждое полупространство является выпуклым множеством.

Таким образом произвольная точка  принадлежит пространству (7, 12). Но точка  на отрезке  взята произвольно, значит, весь отрезок  принадлежит пространству.

Определение. Пересечение конечного числа полупространств (если оно не пустое) называется выпуклым многогранником.

Ограничимся рассмотрением многогранников, образованных пересечением замкнутых полупространств. С наглядной точки зрения выпуклый многогранник представляет собой кусок пространства, высеченный несколькими гиперплоскостями. (=3).

Страницы: 1, 2, 3


© 2010 САЙТ РЕФЕРАТОВ