бесплано рефераты

Разделы

рефераты   Главная
рефераты   Искусство и культура
рефераты   Кибернетика
рефераты   Метрология
рефераты   Микроэкономика
рефераты   Мировая экономика МЭО
рефераты   РЦБ ценные бумаги
рефераты   САПР
рефераты   ТГП
рефераты   Теория вероятностей
рефераты   ТММ
рефераты   Автомобиль и дорога
рефераты   Компьютерные сети
рефераты   Конституционное право
      зарубежныйх стран
рефераты   Конституционное право
      России
рефераты   Краткое содержание
      произведений
рефераты   Криминалистика и
      криминология
рефераты   Военное дело и
      гражданская оборона
рефераты   География и экономическая
      география
рефераты   Геология гидрология и
      геодезия
рефераты   Спорт и туризм
рефераты   Рефераты Физика
рефераты   Физкультура и спорт
рефераты   Философия
рефераты   Финансы
рефераты   Фотография
рефераты   Музыка
рефераты   Авиация и космонавтика
рефераты   Наука и техника
рефераты   Кулинария
рефераты   Культурология
рефераты   Краеведение и этнография
рефераты   Религия и мифология
рефераты   Медицина
рефераты   Сексология
рефераты   Информатика
      программирование
 
 
 

Проектування високошвидкісної лінії внутрішньозонового зв'язку Одеської області

Мультиплексор SТМ-1/4 призначений для організації цифрового потоку зі швидкістю передачі 155(622)Мбіт/с. працюючий по одномодовому оптичному кабелю довжиною хвилі 1300нм. Для кільцевих структур побудови мережі використовується мультиплексор з функцією вставки/виділення (рис 1.6), призначений для забезпечення простого доступу до трібутарних потоків РDH і SDH


Рисунок 1.5 - Схема мультиплексора з функцією вставки/виділення

Основні технічні характеристики синхронного мультиплексора SМА-1 фірми «SIEMENS» приведені в таблиці 1.3.

Таблиця 1.3 - Основні технічні характеристики SMA-1 фірми «SIEMENS»

Найменування показників Одиниця виміру Мультиплексор 5М 1
1

2

3
1 Номінальна швидкість Мбіт/с 155,520
2 Напруга електроживлення В 40,5-75
3 Споживана потужність Вт 70-160
4 Швидкість вхідних потоків основний варіант на хвильовий опір 75 Ом, 120 Ом Мбит/с 2,048

5 Номінальна амплітуда імпульса:

- симетричні з'єднувачі

- коаксіальні з'єднувачі

В

В

3±10%

2,37+10%

6 Послаблення дБ 6 при 1024Гц
7 Кількість інтерфейсів на модуль КІЛЬКІСТЬ 21
8.Загальне число потоків КІЛЬКІСТЬ 63
9.Лінійний код - HDB 3
10.Номінальна тривалість імпульсу НС 244
11 .Частота синхронізації кГц 2048
12.Точність установки частоти синхронізації не гірше од.

1

13. Діапазон довжини хвилі нм 1285 - 1330
14. Енергетичний потенціал на довжині хвилі 1300 нм дБ 36
15.Тип волокна оптичного кабелю - Одномодовий
Іб. Переключення на резервний модуль с 10
17. Переключення на резервну лінію мс 25

1.3.2 Характеристика транспортної системи

Досягнення сучасної техніки комутації і передачі привели до того, що зникла необхідність у створенні сучасної цифрової транспортної мережі чи системи. Транспортна система (ТС) -це інфраструктура, поєднуюча ресурси мережі, що виконують функції транспортування. При транспортуванні виконуються не тільки переміщення інформації, але й автоматизоване і програмне керування складними конфігураціями (кільцевими і розгалуженими), контроль, оперативне переключення та інші мережні функції. ТС є базою для всіх існуючих планованих служб, для інтелектуальних, персональних і інших перспективних мереж, у яких можуть використовуватися синхронний чи асинхронний способи переносу інформації.

Транспортна система СЦІ - органічна сполука інформаційної мережі і системи контролю і керування SDH. Навантаженням інформаційної мережі СЦІ можуть бути сигнали існуючих мереж ПЦІ, а також сигнали нових служб і мереж зв'язку. Аналогові сигнали попередньо перетворюються в цифрову форму за допомогою наявного на мережі устаткування.

В інформаційній мережі СЦІ чітко витримується розподіл по функціональних шарах. Мережа містить три топологічне незалежних шари (канали, тракти і середовище передачі), які підрозділяються на більш спеціалізовані шари. Кожен шар виконує визначені функції і має точки доступу. Вони оснащені власними засобами контролю і керування, що мінімізує зусилля при ліквідації аварій і знижує їхній вплив на інші шари. Функції шару залежать від фізичної реалізації нижнього обслуговуючого шару. Кожен шар може створюватися й удосконалюватися незалежно.

В інформаційній мережі використовуються принципи контейнерних перевезень. Завдяки цьому мережа SDН досягає універсальних можливостей транспортування різнорідних сигналів. У транспортній системі SDН переміщаються не самі сигнали навантаження, а нові цифрові структури віртуальні контейнери, у яких розміщаються сигнали навантаження, що підлягають транспортуванню. Мережні операції з контейнерами виконуються незалежно від змісту. Після доставки на місце і вивантаження сигнали навантаження знаходять вихідну форму. Тому транспортна система SDН є прозорою.

Створення мережних конфігурацій, контроль і керування окремими станціями і всією інформаційною мережею здійснюється програмне і дистанційно а допомогою системи обслуговування SDH.

У шарі середовища передачі самими великими структурами SDН є синхронні транспортні модулі (SТМ), що представляють собою формати лінійних сигналів. Для створення високошвидкісних лінійних сигналів використовується синхронне мультиплексування потоків інформації.

1.3.3 Структури мультиплексування SDH і РDH

Розглянемо групоутворення синхронних транспортних модулів (SТМ). Інформація, що надходить у мережу, узгоджується зі структурами, за допомогою яких підтримується з'єднання. У SDН ці структури утворюються в мережних шарах секцій і трактів і транспортують цифрові потоки, а також широкосмугову інформацію. У функції цих структур входять також компенсація можливих змін швидкості і фаз транспортуючих по мережі SDH цифрових потоків. Така компенсація забезпечує функціонування SDН як синхронної мережі, що допускає плезіохронний режим.

Синхронні мультиплексори фірми «SIEMENS» формують потоки синхронної цифрової ієрархії і плезіохронної цифрової ієрархії. На малюнку 1.7 показані організація і зв'язки структур мультиплексування ієрархій SDН і PDH.


Рисунок 1.6 - Структури мультиплексування SDН і PDH

Мультиплексування починається з формування контейнера. Вхідні потоки PDH упаковуються в контейнери SDН С-12, С-3 чи С-4 відповідно плезіохронному методу зрівняння швидкостей; кожна стандартна швидкість передачі інформації потоку PDH постійно призначаються контейнеру визначеного розміру. Шляхом вдавання до контейнерів заголовка тракту (POH) з контейнерів створюються віртуальні контейнери VС-12, VС-2, VС-3 чи VС-4. Тобто VС=РОH+C. Трактовий заголовок РОН створюється (ліквідується) у пунктах, у яких організується (розформовується) VС, і контролює тракт між цими пунктами. У функції РОН контроль якості тракту і передача аварійної та експлуатаційної інформації. РОН тракту вищого порядку містить так само інформацію про структуру інформаційного навантаження VС. Кожен віртуальний контейнер VС-12 чи VС-2 генерує, разом з відповідними покажчиками TU (покажчик даних), трібутарних одиницю TU-12 чи ТU-3. 'ІU забезпечує узгодження між мережними шарами трактів нижчого і вищого порядків і містить інформаційне навантаження і ТU покажчик, що показує відступ початку циклу навантаження від початку циклу VС вищого порядку.

'TU = ТU-покажчик + VС.


Один чи кілька TU, що займають визначені фіксовані позиції в навантаженні VС вищого порядку, називають «групою трібутарних одиниць» (ТUG). TUG утворюється шляхом генерування байтів ТU-12 U-З.

Через свій розмір віртуальний контейнер VС-4 може передаватися тільки безпосередньо в циклі SТМ-1. Віртуальний контейнер VС-4 разом з відповідним покажчиком АU утворює адміністративну одиницю АU-4. Тобто АU = AU-покажчик + VС. Покажчик AU містить різницю фаз між циклами SDН більш високого порядку і відповідним віртуальним контейнером VС-4. Один чи кілька АU, що займають визначені фіксовані позиції в навантаженні SТМ, називаються «групою адміністративних одиниць» (АUG) Група містить однорідний набір блоків АU-3 чи один АU-4.

SТМ-N утворюється побайтним з'єднанням N-АUG і секційного заголовка SOH:

SТМ-М = SOH + NxAUG.

1.3.4 Структура циклу модуля SТМ-1

Розглянемо логічну структуру модуля SТМ-1, представлену у вигляді циклу SТМ-1 з його заголовками. Модуль SТМ-1 має швидкість 155 Мбіт/с. Крім інформаційного навантаження модуль SТМ-1 має надлишкові сигнали (ОН), що забезпечують автоматизацію функцій контролю, керування й обслуговування (ОАМ) і допоміжні функції. Такі надлишкові сигнали називаються «заголовками». Оскільки SТМ використовується в мережному шарі секцій, його заголовок називається секційним (S0Н). Він підрозділяється на заголовки регенераційної (R SOH) і мультиплексної (М SOН) секцій. R SОН передається між регенераторами, a М SОН між пунктами, у яких формується і розформовується STM, проходячи регенератори транзитом. R SOH - виконує функції циклової синхронізації, контролю помилок, указівки порядку сінхронізуємого модуля, а також створює канали передачі даних, службового зв'язку і користувача. М SOH – виконує функції контролю помилок і створює канали керування системою автоматичного переключення на резерв, передачі даних і службового зв'язку.

Структура циклу модуля STM-1 приведена на малюнку 1.8

Цикл STM має період повторення 125 мкс. Звичайно цикл представляється у вигляді двовимірної структури (матриці), формат якої: 9 рядків на 270 однобайтних стовпців 9(270=2430 елементів). Кожен елемент відповідає одному байту (8 біт) інформації і швидкості 64 кбіт/с. Весь цикл STM-1 має швидкість передачі рівну 64(2430=155520 кбіт/с). Цикл STM-1 складається з трьох груп полів: поле секційних заголовків - регенераційної секції (R SOH) формату 3х9 байтів і мультиплексної секції (М SOH) формату 5х9 байтів; поле покажчика AU-4 формату 1х9 байтів; поле корисного навантаження формату 9х261 байтів.

Блок AU-4 служить для переносу одного віртуального контейнера VC-4, що має свій маршрутний (трактовий) заголовок POH (лівий стовпець розміром 9 байтів). Основне призначення РОH - забезпечити цілісність на маршруті від точки зборки віртуального контейнера до точки його розбирання.

Байти заголовка мають наступні значення:

• байт J1 - використовується для передачі в циклічному режимі 64(8 бітових структур для перевірки цілісності зв'язку;

• байт ВЗ - ВІР-8 код, що контролює помилки парності в попередньому контейнері;

• байт С2 - покажчик типу корисного навантаження. Несе інформацію про наявність корисного навантаження;

• байт Gl - покажчик стану маршруту. Використовується для передачі інформації про стан лінії до віддаленого термінала (наприклад, про наявність чи помилок збоїв на дальньому кінці);

• F2, Z3 - байти, то можуть бути задіяні користувачем даного маршруту для організації каналу зв'язку;

• H4 - узагальнений індикатор положення навантаження, використовується для організації мультифреймов;

• Z4 - байт зарезервований для можливого розвитку системи;

• Z5 - байт оператора, зарезервований для цілей адміністрування мережі.

Розглянемо структуру заголовків циклу STM-1. Заголовок SOH (малюнок 1.9) складається з двох блоків: R SOH - заголовка регенераторної секції розміром 3х9=27 байт і М SOH - заголовка мультиплексної секції розміром 5х9=45 байт.

Рисунок 1.7 - Структура циклу STM-1 і VC-4

Заголовки R SOU і M SOH містять наступні байти:

байти А1, А1, А І, А2, А2, А2 є ідентифікаторами наявності циклу STM-1 у циклі STM-N (А 1 =11110110, А2=00101000);

-байт В1 і три байти В2 формують дві кодові послідовності, використовувані для перевірки на парність з метою виявлення помилок у попередньому фреймі:

-BІP-8 формує 8-бітну послідовність для розміщення в В1 і ВІР-24 - 24-бітну послідовність для розміщення в трьох В2;

-байт С1 визначає значення третьої координати «с» - глибину інтерлівінга в схемі мультиплексування STM-N;

-байти D1-D12 формують службовий канал передачі даних DCC: D1-D3 формують DCC канал регенераторної секції (192 Кбіт/с), D4-D12 - DCC канал мультиплексної секції (576 Кбіт/с);

-байти E1, Е2 можуть бути використані для створення службових каналів голосового зв'язку: Е1 для регенераторної секції (64 Кбіт/с), E2 для мультиплексної секції (64 Кбіт/с);

-байт F1 зарезервований для створення каналу передачі даних голосового зв'язку, для потреб користувача;

-байти КІ, К2 використовуються для сигналізації та керування автоматичним переключенням на справний канал при роботі в захищеному режимі - APS;

-байти Zl, Z2 є резервними за винятком біт 5-8 байтів Zl, використовуємих для повідомлень про статус синхронізації,

-байт S1 - байт SSM - cигнал маркера синхронізації. У ньому передається інформація про якість джерела синхронізації;

-шість байтів, позначених знаком , можуть бути використані як поля визначені середовищем передачі;

-байти, позначені зірочками, не піддаються (на відміну від інших) процедурі шифрування заголовку;

-усі непомічені байти зарезервовані для наступної міжнародної стандартизації.


 

Рисунок 1.8 - Структура заголовків SOH циклу STM-1

1.4 Комплектація обладнання

У даному дипломному проекті використовується обладнання SM 1 фірми «SIEMENS». SM 1 виконує функції лінійного і станційного обладнання. Усього Використовується 10 SM 1, по одному в наступних населених пунктах Одеса, Біляївка, Роздільна, Фрунзівка, Котовськ, Кодима, Балта, Любашівка, Ананьїв, Шіряєво. Комплектація мультиплексора SMA 1 здійснюється наступними модулями:

E12W (робочий) - модуль вставки/виділення потоків 2 Мбіт/с. На одному модулі можна виділяти до 21 потоку 2 Мбіт/с, можливе резервування модулів у режимі 1 +1, цей модуль призначений для нормальної роботи;

Е12Р (резервний) - модуль для переключення на резерв (захист плати);

ОІ 155 - модуль оптичного лінійного тракту. Модуль ОІ 155 містить двунаправлений синхронний інтерфейс. Структура потоків даних і їхні характеристичні параметри відповідають рекомендації ITU-TG.957 для лінійних потоків STM-1 зі швидкістю передачі 155 Мбіт/с. Модуль ОІ 155 виконує функції мультиплексування/демультиплексування SDH для потоків ТU-3, TU-2 і 'I'U-12 рівні AU-4. Потоки SDH можуть передаватися в закритій формі на високому рівні або розосереджуватися по низьких рівнях. Необхідні функції поточного контролю і керування реалізовані для всіх рівнів. Обробка заголовка потоку STM-1 і переключення на резерв (захист тракту) виконуються разом з комутаційним полем;

SN - модуль комутаційного поля. Ядром комутаційного поля є не блокуєма повнодоступна матриця тимчасового комутатора ємністю 1008 еквівалентів VC-12. Матриця здійснює всі переключення під керуванням встроєного мікроконтролера. Усі плезіохронні сигнали які підключаються перед вводом у комутатор перетворюються у віртуальний контейнер відповідного рівня на підставі рекомендації ITU-T № G.709. комутатор забезпечує підключення сигналів рівнів: 'I'U-12 (2 Мбіт/с), TU-2 (6,3 Мбіт/с), TU-3 (34 Мбіт/с) і AU-4 (140 Мбіт/с). При цьому можлива організація наступних видів з'єднань:

- однонаправлене;

- двонаправлене;

- шлейф;

- доступ до розділення;

- віщання.

Рисунок 1.9 - Функціональна схема комутаційного поля

ОHА - модуль доступу до заголовка SDH потоків STM 1. Модуль ОНА підтримує наступні інтерфейси:

- інтерфейси даних 64 кбіт/с на підставі ITU-T G.703;

- інтерфейси мовних сигналів (двохпроводні, чотирьохпроводні);

- комутаційне поле для прямого з'єднання зі службовими каналами;

- комутація конференц-з'єднання каналів службового зв'язку;

- кнопковий телефонний апарат з тональним набором;

- генерація викличних сигналів і акустичних тональних сигналів;

джерело синхронізації. Усі модулі мультиплексора SMA 1 мають загальну функціональну групу SET для синхронізації мультиплексорів SMA 1. Як джерела опорних сигналів можуть використовуватися наступні джерела синхросигналів:

- зовнішній опорний тактовий генератор 2,048 Мгц (вхідний сигнал ТЗ);

- суміжний потік даних STM-1 (вхідний сигнал Т1);

- потік даних 2,048 Мбіт/с (вхідний сигнал T4);

- внутрішній кварцовий генератор (вихідний сигнал ТО).

Як вхідні сигнали можуть бути вибрані до 6 різних зовнішніх джерел

синхросигнала;

UCU-C - модуль блоку керування - це універсальний процесор з операційною системою UNIX, що виконує функції керування синхронним обладнанням SEMF і функції передачі повідомлень MCF у блоці керування системою (SCU);

LAD - модуль локальної аварійної сигналізації і жорсткого диска. Модуль LAD - це частина блоку керування системою (SCU); найбільш важливими функціями модуля LAD є наступні функції:

масова пам'ять блоку SCU на змінному жорсткому диску 2,5 дюйми (планується дзеркальне копіювання твердого диска);

генерація аварійних повідомлень і повідомлень про помилки;

одержання програмних аварійних повідомлень, повідомлення про перешкоди й аварійні сигнали апаратних засобів від модуля UCU-C. Блок керування UCU-U і модуль локальної аварійної сигналізації і короткого диска разом складають блок керування системою (SCU). Блок SCU відповідає за керування і поточний контроль синхронного мультиплексора (функція SEMF) і передає інформацію між інтерфейсами QD2F і QD2B (функція MCF).

Кожен модуль, крім модулів UCU-C і LAD, містить один чи два периферійних блоки керування (PCU). PCU - це процесор для контролю пристроїв передачі даних, регулювання конфігурації і зв'язку з блоками керування системою (SCU) більш високого рівня.

На малюнку 1.11 представлена взаємодія описаних модулів SMA 1. Синхронні мультиплексори SMA 1 являють собою модульні підстативи. Існують підстативи двох типів:

подвійний підстатив, із двома рядами модулів, максимальна кількість виділяємих потоків - 252;

одиночний підстатив, з одним поруч модулів, максимальна кількість виділяємих потоків - 125.

Даним проектом передбачається застосування одиночного підстатива (малюнок 1.12.).

Підстативи синхронних мультиплексорів SMA 1 призначені для установки стативах ETS1 з розмірами 600 мм ( 2200 мм ( 300 мм (ширина, висота, глибина).

Кожен мультиплексор постачений панеллю локальної сигналізації аварійних станів. Панель запобіжних автоматів знаходиться у верхній частині статива ETS1. З боків статива передбачений простір для підведених до мультиплексора кабелів.

При розробці мультиплексорів SMA 1 були використані принципи децентралізації, що дозволило відмовитися від єдиного блоку живлення. Кожен модуль містить свій перетворювач, що виробляє напруги, використовуємо модулями. Застосування такого підходу значно збільшило надійність пристрою і зменшило споживану потужність.


SТМ-1

 

SТМ-1

 

Тактові сигнали

Рисунок 1.10 - Взаємодія модулів SMA -1

 

Рисунок 1.11 – Механічна конструкція SMA 1


1.5 Вибір типу оптичного кабелю

Ведуча роль в удосконаленні ліній зв'язку належить волоконно-оптичним кабелям, що у порівнянні зі звичайними металевими володіють рядом переваг:

• висока завадозахищеність від зовнішніх електромагнітних полів;

велика широкосмуговість. ВОК працюють у діапазоні частот 1014 – 1015Гц.

У світловому діапазоні збільшується несуча частота в 6-10 разів. Звідси |теоретично збільшується обсяг передаваємої інформації. Працюють оптичні лінії зі швидкістю передачі до 10 Гбіт/с (дослідні зразки до 100 Гбіт/с);

мале загасання енергії в оптичному волокні дозволяє істотно збільшити довжину регенераційної ділянки;

• дефіцитні метали (мідь, свинець) замінені кварцем;

висока скритність передачі інформації;

великі будівельні довжини кабелю (2 км і більше) забезпечують менше число з'єднань, що збільшує надійність ВОЛЗ;

зниження маси кабелю.

Оптичний кабель може бути використаний при звичайній побудові зонової телефонної мережі, але більш повно його переваги використовуються при організації зв'язку за кільцевою схемою.

Від правильності вибору оптичного кабелю залежать капітальні витрати й Експлуатаційні витрати на проектовану ВОЛП. На вибір впливають, з одного боку, параметри ВОСП (широкосмуговість чи швидкість передачі інформації, довжина хвилі оптичного випромінювання, енергетичний потенціал, припустима дисперсія, спотворення), з іншого боку, оптичний кабель повинний задовольняти і технічним вимогам:

можливість прокладки в тих же умовах, у яких прокладаються електричні кабелі;

максимальне використання існуючої техніки;

стійкість до зовнішніх впливів і т.д.

Для внутрішньозонових мереж становлять інтерес оптичні кабелі з довжинами хвилі 1,3 і 1,55 мкм, що дозволяють реалізувати регенераційні ділянки (РД) довжиною 60 -100 км. Промисловістю випускаються кабелі наступних марок: OKJI, ОКЗ, ОКЛБ, ОКЛК.

Виходячи з технічних характеристик STM-1, приведених у таблиці 1.2, у проекті будемо використовувати кабелі марок ОКЛБ, ОКЛ, ОКЛК. Дамо коротку характеристику даного кабелю.

Кабель оптичний одномодовий для магістральних і зонових мереж на довжину хвилі =1,3 мкм, кілометричний коефіцієнт загасання 0,22 дБ/км, середньоквадратичне значення дисперсії оптичного волокна (0В) 3,5 пс/нм км. Кабель призначений для прокладки в трубах, колекторах кабельної каналізації, грунтах усіх категорій, на мостах через болота і водяні переходи, Температура, що допускається при експлуатації від -40 до +50°С. Будівельна довжина оптичного кабелю повинна бути не менш 2000 м. У розрахунках будемо брати будівельну довжину рівну lбуд=2 км. Припустиме зусилля, що роздавлює, для даного кабелю дорівнює 1000 Н/див, Припустиме розтяжне зусилля від 7000 до 80000 Н.

    1.5.1 Конструкція. Маркірування і характеристики оптичного кабелю

Відмінними рисами оптичного кабелю від мідного є:

а) велика будівельна довжина (4-5 км);

б) мала механічна міцність;

в) висока надійність.

Мала механічна міцність в оптичному кабелі компенсується введенням у його конструкцію арміруючих елементів, таких як сталевий трос, високоміцних хімічних ниток типу кевлар і т.п. Зовнішня поліетиленова оболонка кабелів, що прокладаються не в КТК, захищається бронею, що також як і кабель покривається поліетиленовою оболонкою. Сучасна броня являє собою сталеву гофровану оболонку товщиною 0,5мм зменшуючи радіус вигину кабелю. Її перевага перед традиційною бронею (дві сталевих стрічки з перекриттям) - захист від вологи.

1.5.2 Конструкція оптичного кабелю ОКЛБ

Елемент конструкції Товщина, мм Діаметр, мм
Оптичне волокно 0,25
Оболонка оптичного модуля 0,35 2,7
Центральний силовий елемент 3,0
Гідрофоб
Проміжня поліетиленова оболонка 1,5 11,9
Броня із сталевих стрічок 2 х 0,3 + 0,5 14,0
Зовнішня поліетиленова оболонка 2,0 18,4

Рисунок 1.12 - Оптичний кабель ОКЛБ


1.6 Розрахунок довжини ділянок регенерації

Довжина регенераційної ділянки РД цифрової волоконно-оптичної системи (ЦВОСП) залежить від багатьох факторів, найважливішим з яких є:

-енергетичний потенціал (Е) ЦВОСП, рівний:

Е = Рпер - Рпр, дБ,

де Рпер - абсолютний рівень потужності оптичного сигналу випромінювання, дБм;

Pпp - абсолютний рівень потужності оптичного сигналу на вході прийомного пристрою, при якому коефіцієнт помилок чи імовірності помилки Рош одиночного регенератора не перевищує заданого значення, дБм;

Е - енергетичний потенціал визначає максимальне-припустиме загасання оптичного сигналу в оптичному волокні (0В), роз'ємних і нероз'ємних з'єднувачах на РД, а також в інших вузлах ЦВОСП.

- дисперсія в 0В, ов, пс/нм км. Дисперсійні явища в 0В призводять до розширення в часі спектральних і модових складових сигналу, тобто до різного часу їхнього поширення, що призводить до зміни форми і тривалості оптичних імпульсних сигналів, до їхнього розширення;

- перешкоди, обумовлені тепловими шумами резисторів, транзисторів, напівпровідникових діодів, підсилювачів, шумами джерел оптичного випромінювання, шумами через відображення оптичного випромінювання від торцевої поверхні 0В, медовими шумами через інтерферентності моди, що поширюються в 0В; цей вид перешкод інтегрально враховується як власні шуми;

- квантовий чи фантомний шум, носієм якого є сам оптичний сигнал (у силу його малості в порівнянні з іншими складовими шумів оптичного JI Т, у проекті його не враховуємо і вплив враховується як вплив дестабілізуючих факторів);

- коефіцієнт загасання 0В; α’ , дб/км;

- мінімально детектуєма потужність (МДМ) Wмдм, що відповідає мінімальному порогові чутливості прийомного пристрою - фотоприймача ЦВОСП із заданою імовірністю помилки.

Для визначення довжини РД складається його розрахункова схема (малюнок1.14).

Рисунок 1.13 - Розрахункова схема РУ ЦВОСП

03-Р - оптичний з'єднувач роз'ємний (їхнє число на РД дорівнює 2),

НРП - регенераційний пункт, що не обслуговується,

ПРОМ - приемопередаючий оптичний модуль, що перетворює оптичний сигнал в електричний, що відновлює параметри останнього і перетворить його в оптичний;

OЗ - Н - оптичний з'єднувач нероз’ємний, число яких на одиницю менше числа будівельних довжин ОК, що складають РД,

Як бачимо з малюнка 1.13 загасання РД дорівнює:

Ард = 2Адв + N Авв+α рд) + At + Рз, дБ, (1.6)

де Адв - загасання, внесене роз'ємним оптичним з'єднувачем, рівне 0.5..1...1,5дБ;

N - число нероз'ємних оптичних з'єднувачів;

Авв – загасання, внесене нероз'ємним оптичним з'єднувачем, дБ;

α - коефіцієнт загасання 0В, дБ/км;

рд - довжина регенераційної ділянки, км;

At - допуски на температурні зміни параметрів ЦВОСП, у тому числі й ОК, для типових ВОСП рівні 0,5... 1,5дБ;

РЗ - допуски на погіршення параметрів елементів ЦВОСП з часом (старіння, деградація і т.п.), Ав=2...6 дб (залежить від типів джерела і приймача оптичного випромінювання та їхніх комбінацій).

Для лінійного обладнання СП синхронної цифрової ієрархії завжди відомим є рівень передачі, тобто Рпер = +2 ...-4 дб.

Довжину регенераційної ділянки знайдемо по формулі:

, км (1.7)

Енергетичний потенціал Е візьмемо з технічних даних апаратури SMA1, рівний 36 дб (таблиця 1.2).

Усі величини у формулі (1.7) відомі, крім N - числа нероз'ємних оптичних з’єднань. Число N на одиницю менше числа будівельних довжин.

Визначимо довжину РД /рд мах, вважаючи, що загасання внесене нероз’ємними з'єднувачами дорівнює нулю. При такому допущенні довжина РД визначиться з вираження:

 к= ,км (1.8)

 (км)

Тепер знаючи lру мах, визначимо число будівельних довжин ОК, що складають РД по формулі (1.9):


 (1.9)

де символ Ц означає округлення убік більшого числа.

 км

Число нероз'ємних оптичних з'єднувачів обчислюємо по формулі (1.10):

N = Nбуд - 1

N=46-1=45

Загасання, внесене цими з'єднувачами, дорівнює N Авв. Отже, довжина РД |повинна бути зменшена на величину

 , км (1.11)

 (км)

З обліком (1.8) - (1.11) довжину РД визначимо по формулі:

lрд = lpд мах - , км 1рд=92- 15=77 (км)

1.7 Схема організації зв'язку і мультиплексного плану

Страницы: 1, 2, 3, 4


© 2010 САЙТ РЕФЕРАТОВ