бесплано рефераты

Разделы

рефераты   Главная
рефераты   Искусство и культура
рефераты   Кибернетика
рефераты   Метрология
рефераты   Микроэкономика
рефераты   Мировая экономика МЭО
рефераты   РЦБ ценные бумаги
рефераты   САПР
рефераты   ТГП
рефераты   Теория вероятностей
рефераты   ТММ
рефераты   Автомобиль и дорога
рефераты   Компьютерные сети
рефераты   Конституционное право
      зарубежныйх стран
рефераты   Конституционное право
      России
рефераты   Краткое содержание
      произведений
рефераты   Криминалистика и
      криминология
рефераты   Военное дело и
      гражданская оборона
рефераты   География и экономическая
      география
рефераты   Геология гидрология и
      геодезия
рефераты   Спорт и туризм
рефераты   Рефераты Физика
рефераты   Физкультура и спорт
рефераты   Философия
рефераты   Финансы
рефераты   Фотография
рефераты   Музыка
рефераты   Авиация и космонавтика
рефераты   Наука и техника
рефераты   Кулинария
рефераты   Культурология
рефераты   Краеведение и этнография
рефераты   Религия и мифология
рефераты   Медицина
рефераты   Сексология
рефераты   Информатика
      программирование
 
 
 

Автоматизированная система управления климатом в тепличных хозяйствах

Описание протоколирования и печати должно содержать описание таблицы нарушений, описание рапорта-отчета, описание архивного тренда, описание протоколирования значений параметров, заносимых оператором в оперативную память контроллера.

Также предусматривается протоколирование действий оператора по изменению задания, режима работы контуров управления, выдаче дискретных управляющих воздействий (пуск, останов, открытие, закрытие) и запись протокола на носители ПЭВМ.

Используемые мнемосхемы могут строиться из следующих элементов:

-  алфавитно-цифровые символы;

-  стандартные технологические символы (клапаны, насосы, емкости и т.д.);

-  графические символы;

-  векторы, дуги, окружности;

-  заштрихованные участки.

Для конфигурирования системы и формирования базы данных предусмотрены режимы корректировки базы данных. Корректировка базы данных выполняется в автономном режиме работы ПЭВМ или на инструментальной ПЭВМ.


7. Разработка базы параметров контроля и регулирования

Все основные и вспомогательные параметры, используемые при управлении АСУ ККТХ, сведены в таблице 7.1. В таблице указаны верхние и нижние границы их предельных значений, единицы измерения, контроллеры, используемые для первичного преобразования и фильтрации параметров и их количество.

Таблица 7.1 – Измеряемые физические величины АСУ ККТХ

Параметр регулирования Ед. изм. Мин. Макс. Контроллер Количество
Влажность воздуха % 0 100 HIH-3602 1
Влажность почвы % 0 40 GARDENA 8
Температура воздуха 0 70 KTY-81-210 1
Температура воды в резервуаре 0 60 ETF01 1
Уровень воды в резервуаре м 0 3 SML-PS1 1
Расход воды м3 0 20 ДРК-4-ОП  1

8. Описание схемы функциональной электрической автоматизации

Автоматическую систему мониторинга и управления водозаборным узлом можно условно разбить на три составляющих:

-  система управления ТХ;

-  рабочее место оператора.

Первая подсистема изображена на функциональной схеме автоматизации в явном виде, последняя – в виде табличного обозначения ЭВМ. Оборудование включает в себя датчики, устанавливаемые по месту, исполнительные устройства, приборы, устанавливаемые на щите.

Все условные обозначения приборов и средств автоматизации исполнены в соответствии с ГОСТ 21.404-85.


9 Выбор и обоснование отдельных узлов и элементов

9.1 Датчик влажности воздуха

По требуемой точности измерения, которая определяется точностью поддержания влажности  и коэффициентом :

и заданному диапазону изменения регулируемой переменной выбираем датчик HIH-3602-L фирмы Honeywell (рис. 9.1).

http://www.gaw.ru/im/publ/sensor_water/t1_2.gif

Рис. 9.1 - Внешний вид датчика влажности

Датчики этой серии предназначены для использования в многоканальных автоматизированных системах контроля параметров микроклимата на базе ПЭВМ, которые осуществляют непрерывные круглосуточные измерения относительной влажности воздуха и поддержание заданных режимов.

В настоящее время на практике для измерения относительной влажности применяется несколько технологий, использующих свойство различных структур изменять свои физические параметры (емкость, сопротивление, проводимость и температуру) в зависимости от степени насыщения водяным паром. Каждой из этих технологий свойственны определенные достоинства и недостатки (точность, долговременная стабильность, время преобразования и т.д.).

Среди всех типов емкостные датчики, благодаря полному диапазону измерения, высокой точности и температурной стабильности, получили наибольшее распространение, как для измерения влажности окружающего воздуха, так и применения в производственных процессах.

Компания Honeywell производит семейство емкостных датчиков влажности, применяя метод многослойной структуры (рис.5), образуемой двумя плоскими платиновыми обкладками и диэлектрическим термореактивным полимером, заполняющим пространство между ними. Термореактивный полимер, по сравнению с термореактивной пластмассой, обеспечивает датчику более широкий диапазон рабочих температур и высокую химическую стойкость к таким агрессивным жидкостям и их парам, как изопропил, бензин, толуол и аммиак. В дополнение к этому датчики на основе термореактивного полимера имеют самый большой срок службы в этиленоксидных стерилизационных процессах.

Характеристика

Величина

Активный материал термореактивный полимер
Подложка керамическая или кремниевая
Изменяющийся параметр ёмкость
Измеряемый параметр % RH
Диапазон измерения 0…100% RH
Точность ±1…±5%
Гистерезис 1,2%
Линейность ±1%
Время отклика  5…60 сек
Диапазон рабочих температур

-40…+1850С

Температурный эффект

-0,0022% RH/0С

Долговременная стабильность ±1% RH/5 лет
Стойкость к загрязнению отличная
Стойкость к конденсату отличная

В процессе работы водяной пар проникает через верхнюю пористую обкладку конденсатора (рис.5) и уравновешивается с окружающим газом. Одновременно эта обкладка защищает электрические процессы, протекающие в полимерном слое, от внешних физических воздействий (света и электромагнитного излучения). Слой полимера, покрывающий пористый платиновый электрод сверху, служит защитой конденсатора от пыли, грязи и масел. Такая мощная фильтрационная система, с одной стороны, обеспечивает датчику длительную бесперебойную работу в условиях сильной загрязненности окружающей среды, с другой - снижает время отклика.

Выходной сигнал абсорбционного датчика влажности представляет собой функцию от температуры и влажности, поэтому для получения высокой точности измерения в широком диапазоне рабочих температур требуется температурная компенсация характеристики преобразования. Компенсация особенно необходима, когда датчик используется в индустриальном оборудовании для измерения влажности и точки росы (рис. 9.2).

Рис. 9.2 - Метод многослойной структуры, применяемый при изготовлении датчиков влажности

Датчики влажности Honeywell - это интегрированные приборы. Помимо чувствительного элемента, на той же подложке расположена схема обработки сигнала, которая обеспечивает преобразование сигнала, его усиление и линеаризацию. Выходной сигнал датчика Honeywell является функцией от напряжения питания, окружающей температуры и влажности. Чем выше напряжение питание, тем больше размах выходного сигнала и, соответственно, чувствительность. Связь же между измеренной датчиком влажностью, истинной влажностью и температурой показана на объемной диаграмме (рис. 9.3).

Рис. 9.3 - Связь между измеренной датчиком влажностью, истинной влажностью и температурой

Она легко аппроксимируется с помощью комбинации двух выражений:

1.  Прямая наилучшего соответствия при 25 °C (жирная линия на диаграмме), описывается выражением Uвых = Uпит(0,0062 · (%RH25) + 0,16). Из этого уравнения определяется процент RH25 при температуре 25 °C.

2.  Далее производится температурная коррекция и вычисляется истинное значение RH: RHистинная = (%RH25) · (1,0546 - 0,00216T), где T измеряется в °C.

Выражения выше соответствуют характеристикам реальных датчиков со следующими отклонениями:

 – для

 – для

 – для

Модели HIH-3602-L и HIH-3602-L-CP выполнены в корпусе TO-39 со щелевым отверстием. Они предлагают оптимальное соотношение цена/надежность. Эти датчики нашли широкое применение в метеорологическом оборудовании и системах климат-контроля.


9.2 Датчик расхода воды на распыление

Датчик ДРК-4 предназначен для измерения расхода и объема воды в трубопроводах и имеет следующие технические характеристики:

1) Измеряемая среда – вода с параметрами:

– температура от 1 до 150°С;

– давление до 2,5 МПа;

– вязкость до 2·106 м2/с

2) Диаметр трубопровода Dу 80...4000 мм

3) Динамический диапазон 1:100

4) Пределы измерений 2,7...452 400 м3/ч

5) Выходные сигналы: токоимпульсный (ТИ); унифицированный токовый 0…5, 4…20 мА;

6) Предел допускаемой относительной погрешности измерений объема и расхода по импульсному сигналу и индикатору:

±1,5% при скоростях потока 0,5...5 м/с;

±2,0% при скоростях 0,1≤V<0,5; 5<V≤10 м/с.

7) Предел допускаемой относительной погрешности измерения

времени наработки ±0,1%;

8) 1 или 2 канала измерения расхода;

9) Формирование почасового архива значений объема и расхода;

10) Самодиагностика.

Принцип действия датчиков ДРК-4 основан на корреляционной дискриминации времени прохождения случайными, например, турбулентными флуктуациями расстояния между двумя парами ультразвуковых акустических преобразователей АП1-АП4, АП2-АП3. Это время транспортного запаздывания и является мерой расхода контролируемой среды, движущейся по трубопроводу. Во

время работы акустические преобразователи (АП1-АП4), возбуждаемые генераторами ультразвуковой частоты (ГУЧ1 и ГУЧ2), излучают ультразвуковые колебания. Эти колебания, пройдя через поток жидкости, порождают вторичные электрические колебания на АП. Из-за взаимодействия встречных ультразвуковых лучей с неоднородностями потока, обусловленными, например, турбулентностью этого потока, электрические колебания на АП оказываются модулированными. Эти колебания поступают на фазовые детекторы (ФД1 и ФД2) и далее на корреляционный дискриминатор (КД), управляемый микропроцессором.

В результате корреляционной обработки определяется время транспортного запаздывания, по которому микропроцессор производит вычисление периода

выходных импульсов и их формирование. Далее КД определяет объем нарастающим итогом, мгновенный расход, время наработки и выводит информацию на индикатор. Выходные импульсы преобразователя

ДРК-4ЭП могут передаваться для дополнительной обработки на тепловычислитель, счетчик-интегратор либо оконечный преобразователь ДРК-4ОП, который формирует унифицированный токовый выходной сигнал 0…5, 4…20 мА, пропорциональный мгновенному расходу.

Конструктивно датчик ДРК-4 состоит из комплекта первичных преобразователей ДРК$4ПП, электронного преобразователя ДРК-4ЭПХХ и оконечного преобразователя ДРК-4ОП. Комплект первичных преобразователей состоит из 4-х акустических преобразователей ДРК-4АП с соединительными кабелями длиной 3 м и 4-х штуцеров для монтажа их на трубопроводе.

Контроллер блока индикации суммирует входные импульсы, вычисляет накопленный объем нарастающим итогом и мгновенный расход, выводит эту информацию на индикатор, формирует двоичный код, характеризующий

мгновенный расход, который вводится в ЦАП, формирует архив.

Основные преимущества:

·  отсутствие сопротивления потоку и потерь давления;

·  возможность монтажа первичных преобразователей на трубопроводе при любой ориентации относительно его оси;

·  коррекция показаний с учетом неточности монтажа первичных преобразователей;

·  сохранение информации при отключении питания в течение 10 лет;

·  беспроливной, имитационный метод поверки;

·  межповерочный интервал - 4 года.

9.3 Исполнительный механизм

В качестве исполнительного механизма синтезируемой системы используется миниспринклер 4191 компании JHi I.S., который специально разработан для поддержания постоянной влажности, уменьшения высоких температур в жарком климате за счет испарения и для орошения растений в специальных условиях. Миниспринклер обеспечивает туманообразование с очень мелким размером капелек - приблизительно от 50 до 250 микрон при давлении 3.0 Атм. Уникальная конструкция исключает образование крупных капель и капание на растения при размещении спринклеров сверху. Миниспринклер работает в широком диапазоне давления воды. Поднимая давление и используя спринклеры с меньшим расходом воды, можно получить минимальный размер капель. Минимальное давление, при котором закрывается предохранительный клапан, равно приблизительно 2.5 Атм. Миниспринклеры могут устанавливаться как на стойках, так и подвешиваться в случае верхней разводки воды.

Материал Полиацетат
Расход воды 12,20,35,50,70,90,160,180 литров в час
Рабочее давление 1,0…4,0 атм.
Диаметр орошения 2,0…4,0 м
Угол раскрытия факела воды Круговой, примерно 310°
Направление распыления Горизонтальное/вертикальное
Размер капель 50-150  крон при давлении 3,0 атм.

9.4 Датчик уровня воды в резервуаре ADZ-Floater Probe SML-PS1 «NAGANO»

Наименование параметра

Величина

Диапазоны измерения давления, бар 0-25
Выходной сигнал, мА 4-20
Схема включения Двухпроводная
Питание, В 10-32
Температура, оС +5…+70
Точность измерения, % 0,5

9.5 Датчик влажности почвы Gardena

Для учета влажности почвы в автоматическом управлении поливом. Долговечность и надежность работы за счет термоэлектрического измерения разности температур в почве. Требуемая влажность задается с помощью вращающегося регулятора. Индикация актуального значения влажности почвы. Укомплектован соединительным кабелем 5 м со штекером.

9.6 Датчик температуры в помещении теплицы KTY81-210

Датчики температуры серии KTY81-2 имеют положительный температурный коэффициент сопротивления и хорошо подходят для измерительных устройств, а также для систем контроля и управления. Датчики помещаются в специальный освинцованный пластиковый корпус.

Технические характеристики:

-  нижний порог измеряемой температуры – -55 С;

-  сопротивление, соответствующие нижнему порогу – 1980 Ом (при 1 мА);

-  верхний порог измеряемой температуры – 150 С;

-  сопротивление, соответствующие верхнему порогу – 2020 Ом (при 1 мА);

-  максимальная сила тока на выходе – 10 мА;

-  температурный коэффициент – 0,79;

-  тепловая постоянная времени – 30 с на открытом воздухе;

-  ошибка - ±3,02 С.

9.7 Датчик температуры воды в резервуаре numerix ETF01

Погружные датчики температуры устанавливаются непосредственно в трубопровод для измерения температуры воды (или другого теплоносителя) в системах отопления, вентиляции и кондиционирования воздуха.

Длина от 50 до 400 мм

Диапазон измеряемых температур - от -30 до +150 градусов

Чувствительные элементы: Pt100, Pt1000, Ni1000, Ni1000 TK5000, NTC 1,8кОм, KTY81-210, NTC 10К, 20K, 30K, 50K и 10K Precon, LM235Z

Латунная (ETF01) или стальная гильза (ETF02)

Посадочная резьба гильзы 1/2 дюйма

Подключение - по двухпроводной схеме (трехпроводные и четырехпроводные варианты - под заказ)

Измерительный ток - 1 мА

Клеммник - до 1,5 кв. мм

Температура эксплуатации - от -20 до +100 градусов Цельсия

Корпус - пластик. Класс защиты - IP43

Защёлкивающаяся крышка

Размеры 65*59*36 мм

9.8 Промышленный контроллер Modicon 984 - 685

Промышленные контроллеры от Modicon серии 984 являются совместимыми между собой устройствами с широкой функциональностью, каждое из которых имеет свой круг задач. Каждая система на основе такого контроллера состоит из ПЛК (программируемый логический контроллер, от английского PLC - Programmable Logic Controller), соединенного с модулями ввода и вывода. Эти модули, в свою очередь, подключаются к датчикам и исполнительным устройствам. На основании полученных от них данных, контроллер и управляет производственным процессом. Модули ввода преобразовывают сигналы от датчиков в вид, необходимый для обработки их в ЦП. Модули вывода получают сигналы от ЦП и преобразовывают в напряжение или ток, необходимые для управления исполнительными устройствами.

Системная память контроллеров 984-й серии основана на технологии CMOS (complementary metal-oxide semiconductor или комплиментарный метало - оксидный полупроводник) с резервным элементом питания для обеспечения сохранности информации при отключении питания. В контроллере используется два типа памяти: ПЗУ, для хранения системной информации, и ОЗУ, защищенная резервным элементом питания, для хранения пользовательской программы.

Периферийные устройства, к которым можно отнести и ведущий ПК, могут подключаться непосредственно к ПЛК 984-й серии через встроенные порты Modbus. Modbus это коммуникационный протокол, основанный на RS232, использующийся для сбора данных, редактирования программ и загрузки их в ПЛК.

Промышленный контроллер 984-685 предназначен для построения средних и больших систем управления. Он поддерживает до 5 локальных модулей ввода вывода 800й серии и до 31 модуля удаленного ввода-вывода. Для обеспечения удаленного ввода-вывода необходим дополнительный процессор S908.

ПЛК 984-685 оснащен двумя порами Modbus и одним портом Modbus Plus.

Таблица 9.1 – Технические характеристики контроллера

Архитектура
Память
Пользовательская логика 16к
Регистры 9999
Всего 26к
Система Ввода-вывода
Макс. цифровых каналов 8192 вх./8192 вых
Макс. аналоговых каналов 1088 вх./1088 вых
Локальный ввод-вывод
Максимальное кол-во бит вв/выв 1024 вх/1024 вых
Максимальное кол-во блоков вв/выв 5
Удаленный ввод-вывод
Максимальное кол-во бит вв/выв 1024 вх/1024 вых или 1024 вх/1024 вых
Максимальное кол-во блоков вв./выв 31 16
Быстродействие 1 мс/к
Коммуникационные порты 2 Modbus
1 Modbus Plus
Электрические характеристики
Энергопотребление 115В или 230В постоянного, 24В переменного тока
Климатические характеристики
Допустимая температура окружающего воздуха 0…60 С
Допустимая влажность окружающего воздуха 0…95%
Допустимые перегрузки 10 G (11 мс)
Физические характеристики
Габариты
W x H x D 39,4 x 266 x 203 мм

Таблица 9.2 – Технические характеристики модуля дискретных входов

Страницы: 1, 2, 3, 4


© 2010 САЙТ РЕФЕРАТОВ