бесплано рефераты

Разделы

рефераты   Главная
рефераты   Искусство и культура
рефераты   Кибернетика
рефераты   Метрология
рефераты   Микроэкономика
рефераты   Мировая экономика МЭО
рефераты   РЦБ ценные бумаги
рефераты   САПР
рефераты   ТГП
рефераты   Теория вероятностей
рефераты   ТММ
рефераты   Автомобиль и дорога
рефераты   Компьютерные сети
рефераты   Конституционное право
      зарубежныйх стран
рефераты   Конституционное право
      России
рефераты   Краткое содержание
      произведений
рефераты   Криминалистика и
      криминология
рефераты   Военное дело и
      гражданская оборона
рефераты   География и экономическая
      география
рефераты   Геология гидрология и
      геодезия
рефераты   Спорт и туризм
рефераты   Рефераты Физика
рефераты   Физкультура и спорт
рефераты   Философия
рефераты   Финансы
рефераты   Фотография
рефераты   Музыка
рефераты   Авиация и космонавтика
рефераты   Наука и техника
рефераты   Кулинария
рефераты   Культурология
рефераты   Краеведение и этнография
рефераты   Религия и мифология
рефераты   Медицина
рефераты   Сексология
рефераты   Информатика
      программирование
 
 
 

Основы систем автоматизированного проектирования

Поскольку все Dj³0, то план представленный в данной таблице будет оптимальным.

Ответ: x1 =0; x2=6; x3=8; x4=0; L=12;

Если в системе ограничений имеются неравенствами вида > и / или =, начальный план не может быть найден так же просто, как в рассмотренном примере. В таких случаях начальный план отыскивают с помощью искусственных переменных.

Пример: Найти максимум функции

L=2x1+3x2-5x3;

при ограничениях:

2x1+x2-x3³7,

x1+2x2+x3³6,

x1+4x2=8,

xj³0

Вводим в систему три искусственные переменные: x6, x7, x8, позволяющие получить начальный базис.

Для исключения из базиса этих переменных последние вводятся в целевую функцию с большим отрицательным коэффициентом М (в задаче минимизации – с положительным М)

L¢=L-M*x6-M*x7-M*x8®max

при ограничениях

2x1+x2-x3-x4+x6=7,

x1+2x2+x3-x5+x7=6,

x1+4x2+x8=8,

xj³0

Выбрав в качестве начального базиса векторы A6, A7, A8, решаем полученную задачу с помощью табличного симплекс-метода.

Если в оптимальном решении такой задачи нет искусственных переменных, это и есть оптимальное решение исходной задачи.

Если же в оптимальном решении данной задачи хоть одна из искусственных переменных будет отлична от нуля, то система ограничений исходной задачи несовместна и исходная задача не разрешима.

Табл 0

0

2

3

-5

0

0

-M

-M

-M

q

Csi

базис

A0

A1

A2

A3

A4

A5

A6

A7

A8

-M

A6

7 2 1 -1 -1 0 1 0 0 7

-M

A7

6 1 2 1 0 -1 0 1 0 3

-M

A8

8 1 4 0 0 0 0 0 1 2Ümin

D

-21M

-4M

-2

-7M

-3

5 M M 0 0 0
Ýmin

Элемент a82=4 является направляющим (в таблице выделен зеленым цветом).

Столбцы, соответствующие искусственным переменным по мере вывода из базиса из расчета исключаются.

Табл 1

0

2

3

-5

0

0

-M

-M

q

Csi

базис

A0

A1

A2

A3

A4

A5

A6

A7

-M

A6

5 7/4 0 -1 -1 0 1 0 20/7Ümin

-M

A7

2 1/2 0 1 0 -1 0 1 4

3

A2

2 1/4 1 0 0 0 0 0 8

D

-7M+6 -9М/4–3/4 0 M+5 M M 0 0
Ýmin

Элемент a61=7/4 является направляющим (в таблице выделен зеленым цветом).

Табл 2

0

2

3

-5

0

0

-M

q

Csi

базис

A0

A1

A2

A3

A4

A5

A6

2

A1

20/ 7 1 0 -4/ 7 -4/ 7 0 0

-M

A7

4/ 7 0 0 9/ 7 2/ 7 -1 1 4/9Ümin

3

A2

9/ 7 0 1 1/ 7 1/ 7 0 0 9

D

-4M/ 7

+67/ 7

0 0

-9M/ 7

+30/ 7

2M/ 7

-5/ 7

M 0
Ýmin

Направляющий элемент a73=9/ 7 (в таблице выделен зеленым цветом).

Табл 3

0

2

3

-5

0

0

Csi

базис

A0

A1

A2

A3

A4

A5

2

A1

28/9 1 0 0 0 -4/9

-5

A3

4/9 0 0 1 2/9 -7/9

3

A2

11/9 0 1 0 -1/9 1/9

D

23/3 0 0 0 23/9 30/9

Найдено оптимальное решение, так как все оценки неотрицательные и в базисе нет искусственных переменных:

x1=28/9, x2=11/9, x3=4/9, x4=0, L=23/3.


Список литературы

1.  Разработка САПР. В 10 кн. Под ред. А.В. Петрова – М.: Высш. шк., 1990.

2.  Системы автоматизированного проектирования: Учебн. пособие для ВУЗов: В 9 кн. / Под ред. И.П. Норенкова. – М.: Высш. шк., 1986. – 159 с.

3.  Основы построения систем автоматизированного проектирования / А.И. Петренко, О.И. Семенков. – 2-е изд., стер. – К.: Вища шк. Головное изд-во, 1985 – 294 с.

4.  Справочник по САПР/ А.П. Будя, А.Е. Кононюк, К.П. Куценко и др.; Под ред. В.И. Скурихина. – К.: Техника, 1988. – 375 с.

5.  Вермишев Ю.Х. Основы автоматизации проектирования. – М.: Радио и связь, 1988 – 288 с.

6.  САПР изделий и технологических процессов в машиностроении / Р.А. Аллик, В.И. Бородянский, А.Г. Бурин и др. Под общ. ред. Р.А. Аллика. – Л.: Машиностроение, 1986. – 319 с.

7.  Бойко В.В., Савинков В.М. Проектирование баз данных информационных систем. 2-е изд., перераб. и доп. – М.: Финансы и статистика, 1989. – 351 с.

8.  Грувер М., Зиммерс Э. САПР и автоматизация производства: Пер. с англ. – М.: Мир, 1987. – 528 с.

9.  Гардан И., Люка М. Машинная графика и автоматизация конструирования: Пер. с франц. – М.: Мир, 1987. – 272 с., ил.

10.Корячко В.П. и др. Теоретические основы САПР: Учебник для ВУЗов. – М.: Энергоатомиздат, 1987. – 400 с., ил.

11.Робототехника и гибкие автоматизированные производства. В 9 кн. Учебное пособие для ВУЗов / Ю.М. Соломинцев и др. Под ред. И.М. Макарова. – М.: Высш. шк., 1986.

12.Хирн Д., Бейкер М. Микропроцессорная графика: Пер. с англ. – М.: Мир, 1987. – 352 с.


Страницы: 1, 2, 3


© 2010 САЙТ РЕФЕРАТОВ