бесплано рефераты

Разделы

рефераты   Главная
рефераты   Искусство и культура
рефераты   Кибернетика
рефераты   Метрология
рефераты   Микроэкономика
рефераты   Мировая экономика МЭО
рефераты   РЦБ ценные бумаги
рефераты   САПР
рефераты   ТГП
рефераты   Теория вероятностей
рефераты   ТММ
рефераты   Автомобиль и дорога
рефераты   Компьютерные сети
рефераты   Конституционное право
      зарубежныйх стран
рефераты   Конституционное право
      России
рефераты   Краткое содержание
      произведений
рефераты   Криминалистика и
      криминология
рефераты   Военное дело и
      гражданская оборона
рефераты   География и экономическая
      география
рефераты   Геология гидрология и
      геодезия
рефераты   Спорт и туризм
рефераты   Рефераты Физика
рефераты   Физкультура и спорт
рефераты   Философия
рефераты   Финансы
рефераты   Фотография
рефераты   Музыка
рефераты   Авиация и космонавтика
рефераты   Наука и техника
рефераты   Кулинария
рефераты   Культурология
рефераты   Краеведение и этнография
рефераты   Религия и мифология
рефераты   Медицина
рефераты   Сексология
рефераты   Информатика
      программирование
 
 
 

Лабораторная работа: Статистические методы обработки данных

Вывод: В ходе работы я освоил методы построения основных видов нелинейных уравнений парной регрессии с помощью с помощью ЭВМ (внутренне линейные модели), научился получать и анализировать показатели качества регрессионных уравнений.

Y 0,3 1,2 2,8 5,2 8,1 11 16,8 16,9 24,7 29,4
X 0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,5
1/x 4 2 1,333333 1 0,8 0,666667 0,571429 0,5 0,444444 0,4
ln y -1,20397 0,182322 1,029619 1,648659 2,0918641 2,397895 2,821379 2,827314 3,206803 3,380995
ln x -1,38629 -0,69315 -0,28768 0 0,2231436 0,405465 0,559616 0,693147 0,81093 0,916291
Линейная 12,96 -6,18 Экспонента 1,824212 -0,67 a= 0,511707
1,037152 1,60884 0,225827 0,350304 b= 6,197909
0,951262 2,355101 0,89079 0,512793
156,1439 8 65,25304 8
866,052 44,372 17,15871 2,103652
Гипербола -6,25453 18,96772 Степенная 1,993512 1,590799 a= 4,90767
2,321705 3,655951 0,033725 0,023823 b= 7,341268
0,475661 7,724727 0,997716 0,074163
7,257293 8 3494,117 8
433,0528 477,3712 19,21836 0,044002
F - критическое 5,317655

 

 


Лабораторная работа № 5

ПОЛИНОМИНАЛЬНАЯ РЕГРЕССИЯ

Цель: По опытным данным построить уравнение регрессии вида у = ах2 + bх + с.

ХОД РАБОТЫ:

Рассматривается зависимость урожайности некоторой культуры уi от количества внесенных в почву минеральных удобрений хi. Предполагается, что эта зависимость квадратичная. Необходимо найти уравнение регрессии вида ỹ = ах2 + bx + c.

x 0 1 2 3 4 5 6 7 8 9
y 29,8 58,8 72,2 101,5 141 135,1 156,6 181,7 216,6 208,2

Введем эти данные в электронную таблицу вместе с подписями в ячейки А1-K2. Построим график. Для этого обведем данные Y (ячейки В2-K2), вызываем мастер диаграмм, выбираем тип диаграммы «График», вид диаграммы – график с точками (второй сверху левый), нажимаем «Далее», переходим на закладку «Ряд» и в поле «Подписи оси Х» делаем ссылку на В2-K2, нажимаем «Готово». График можно приблизить полиномом 2 степени у = ах2 + bх + с. Для нахождения коэффициентов a, b, c нужно решить систему уравнений:

Рассчитаем суммы. Для этого в ячейку А3 вводим подпись «Х^2», а в В3 вводим формулу «= В1*В1» и Автозаполнением переносим ее на всю строку В3-K3. В ячейку А4 вводим подпись «Х^3», а в В4 формулу «=В1*В3» и Автозаполнением переносим ее на всю строку В4-K4. В ячейку А5 вводим «Х^4», а в В5 формулу «=В4*В1», автозаполняем строку. В ячейку А6 вводим «Х*Y», а в В8 формулу «=В2*В1», автозаполняем строку. В ячейку А7 вводим «Х^2*Y», а в В9 формулу «=В3*В2», автозаполняем строку. Теперь считаем суммы. Выделяем другим цветом столбец L, щелкнув по заголовку и выбрав цвет. В ячейку L1 помещаем курсор и щелкнув по кнопке автосуммы со значком ∑, вычисляем сумму первой строки. Автозаполнением переносим формулу на ячейки L1-710.

Решаем теперь систему уравнений. Для этого вводим основную матрицу системы. В ячейку А13 вводим подпись «А=», а в ячейки матрицы В13-D15 вводим ссылки, отраженные в таблице

 

B C D
13 =L5 =L4 =L3
14 =L3 =L2 =L1
15 =L2 =L1 =9

Вводим также правые части системы уравнений. В G13 вводим подпись «В=», а в Н13-Н15 вводим, соответственно ссылки на ячейки «=L7», «=L6», «=L2». Решаем систему матричным методом. Из высшей математики известно, что решение равно А-1В. Находим обратную матрицу. Для этого в ячейку J13 вводим подпись «А обр.» и, поставив курсор в K13 задаем формулу МОБР (категория «Математические»). В качестве аргумента «Массив» даем ссылку на ячейки В13:D15. Результатом также должна быть матрица размером 4×4. Для ее получения обводим ячейки K13-М15 мышью, выделяя их и нажимаем F2 и Ctrl+Shift+Enter. Результат – матрица А-1. Найдем теперь произведение этой матрицы на столбец В (ячейки Н13-Н15). Вводим в ячейку А18 подпись «Коэффициенты» и в В18 задаем функцию МУМНОЖ (категория «Математические»). Аргументами функции «Массив 1» служит ссылка на матрицу А-1 (ячейки K13-М15), а в поле «Массив 2» даем ссылку на столбец В (ячейки Н13-Н16). Далее выделяем В18-В20 и нажимаем F2 и Ctrl+Shift+Enter. Получившийся массив – коэффициенты уравнения регрессии a, b, c. В результате получаем уравнение регрессии вида: у = 1,201082х2 – 5,619177х + 78,48095.

Построим графики исходных данных и полученных на основе уравнения регрессии. Для этого в ячейку А8 вводим подпись «Регрессия» и в В8 вводим формулу «=$В$18*В3+$В$19*В1+$В$20». Автозаполнением переносим формулу в ячейки В8-K8. Для построения графика выделяем ячейки В8-K8 и, удерживая клавишу Ctrl, выделяем также ячейки В2-М2. Вызываем мастера диаграмм, выбираем тип диаграммы «График», вид диаграммы – график с точками (второй сверху левый), нажимаем «Далее», переходим на закладку «Ряд» и в поле «Подписи оси Х» делаем ссылку на В2-М2, нажимаем «Готово». Видно, что кривые почти совпадают.

ВЫВОД: в процессе работы я по опытным данным научился строить уравнение регрессии вида у = ах2 + bх + с.

x 0 1 2 3 4 5 6 7 8 9
y 29,8 58,8 72,2 101,5 141 135,1 156,6 181,7 216,6 208,2
X^2 0 1 4 9 16 25 36 49 64 81
X^3 0 1 8 27 64 125 216 343 512 729
X^4 0 1 16 81 256 625 1296 2401 4096 6561
X*Y 0 58,8 144,4 304,5 564 675,5 939,6 1271,9 1732,8 1873,8
X^2*Y 0 58,8 288,8 913,5 2256 3377,5 5637,6 8903,3 13862,4 16864,2
Регресс. 78,48095 85,30121 94,52364 106,1482 120,175 136,6039 155,435 176,6682 200,3036 226,3412
A= 15333 2025 285 B= 52162,1 A Обр. 0,003247 -0,03247 0,059524
2025 285 45 7565,3 -0,03247 0,341342 -0,67857
285 45 9 1301,5 0,059524 -0,67857 1,619048
Коэффиц. 1,201082 a

 

5,619177 b

 

78,48095 c

 


Страницы: 1, 2, 3


© 2010 САЙТ РЕФЕРАТОВ