бесплано рефераты

Разделы

рефераты   Главная
рефераты   Искусство и культура
рефераты   Кибернетика
рефераты   Метрология
рефераты   Микроэкономика
рефераты   Мировая экономика МЭО
рефераты   РЦБ ценные бумаги
рефераты   САПР
рефераты   ТГП
рефераты   Теория вероятностей
рефераты   ТММ
рефераты   Автомобиль и дорога
рефераты   Компьютерные сети
рефераты   Конституционное право
      зарубежныйх стран
рефераты   Конституционное право
      России
рефераты   Краткое содержание
      произведений
рефераты   Криминалистика и
      криминология
рефераты   Военное дело и
      гражданская оборона
рефераты   География и экономическая
      география
рефераты   Геология гидрология и
      геодезия
рефераты   Спорт и туризм
рефераты   Рефераты Физика
рефераты   Физкультура и спорт
рефераты   Философия
рефераты   Финансы
рефераты   Фотография
рефераты   Музыка
рефераты   Авиация и космонавтика
рефераты   Наука и техника
рефераты   Кулинария
рефераты   Культурология
рефераты   Краеведение и этнография
рефераты   Религия и мифология
рефераты   Медицина
рефераты   Сексология
рефераты   Информатика
      программирование
 
 
 

Витамины

Витамины

Подпись: Министерство общего и профессионального образования
Российской Федерации


Управление образования Брянской области

Профессиональный лицей №39

«Согласовано»

Председатель методической комиссии

__________________ В. А. Юферова

«___» _____________ 2002 г.

 «Утверждаю»

Зам. директора по общеобразовательным дисциплинам

__________________ Л. В. Кузовкова

«___» _____________ 2002 г.

КУРСОВАЯ РАБОТА


Предмет: Химия

Тема: Витамины.

Выполнила:

Учащаяся гр. №1

Профессия:

агент коммерческий

Лапичева А. А.

Преподаватель:

Янченко С. И.

Оценка: ___________

Подпись: Брянск



Содержание

Введение 4
История открытия витаминов 5
Роль и значение витаминов в питании человека. Потребность в витаминах (авитаминоз, гиповитаминоз, гипервитаминоз) 8
Классификация витаминов 11
Содержание витаминов в пищевых продуктах 21
Промышленное производство витаминов 29
Устойчивость и стабильность при кулинарной обработке 33
Заключение 36
Литература 37

ВВЕДЕНИЕ

Современное человеческое общество живет и продолжает развиваться, активно используя достижения науки и техники, и практически немыслимо остановиться на этом пути или вернуться назад, отказавшись от использования знаний об окружающем мире, которыми человечество уже обладает. Накоплением этих знаний, поиском закономерностей в них и их применением на практике занимается наука. Человеку как объекту познания свойственно разделять и классифицировать предмет своего познания (вероятно, для простоты исследования) на множество категорий и групп; так и наука в свое время была поделена на несколько больших классов: естественные науки, точные науки, общественные науки, науки о человеке и пр. Каждый из этих классов делится, в свою очередь, на подклассы и т.д. и т.п.

В настоящее время в мире существует множество научных центров, ведущих разнообразные химико-биологические исследования. Странами-лидерами в этой области являются США, европейские страны: Англия, Франция, Германия, Швеция, Дания, Россия и др. В нашей стране существует множество научных центров, расположенных в Москве и Подмосковье (Пущино, Обнинск, Черноголовка), Петербурге, Новосибирске, Красноярске, Владивостоке... Одни из ведущих центров по стране Институт биоорганической химии им.М.А.Шемякина и Ю.А.Овчинникова, Институт молекулярной биологии им.В.А.Энгельгардта, Институт органического синтеза им.Н.Д.Зелинского, Институт физикохимической биологии МГУ им.Белозерского и др. В СанктПетербурге можно отметить Институт Цитологии РАН, химический и биологические ф-ты Гос. Университета, Институт экспериментальной медицины РАМН, Институт онкологии РАМН им. Петрова, Институт особо чистых биопрепаратов МЗиМП и т.п.

Кроме множества лекарств, в повседневной жизни люди сталкиваются с достижениями физико-химической биологии в различных сферах своей профессиональной деятельности и в быту. Появляются новые продукты питания или совершенствуются технологии сохранения уже известных продуктов. Производятся новые косметические препараты, позволяющие человеку быть здоровым и красивым, защищающие его от неблагоприятного воздействия окружающей среды. В технике находят применение различные биодобавки ко многим продуктам оргсинтеза. В сельском хозяйстве применяются вещества, способные повысить урожаи (стимуляторы роста, гербициды и др.) или отпугнуть вредителей (феромоны, гормоны насекомых), излечить от болезней растения и животных и многие другие...

Все эти вышеперечисленные успехи были достигнуты с применением знаний и методов современной химии. В современной биологи и медицине химии принадлежит одна из ведущих ролей, и значение химической науки будет только возрастать.

ИСТОРИЯ ОТКРЫТИЯ ВИТАМИНОВ

Всем известное слово "витамин" происходит от латинского "vita" - жизнь. Такое название эти разнообразные органические соединения получили далеко не случайно: роль витаминов в жизнедеятельности организма чрезвычайно велика.

Ко второй половине 19 века было выяснено, что пищевая ценность продуктов питания  определяется содержанием в них в основном следующих веществ: белков, жиров, углеводов, минеральных солей и воды.

Считалось общепризнанным, что если в пищу человека входят в определенных количествах все эти питательные вещества, то она полностью отвечает биологическим потребностям организма. Это мнение прочно укоренилось в науке и поддерживалось такими авторитетными физиологами того времени, как Петтенкофер, Фойт и Рубнер.

Однако практика далеко не всегда подтверждала правильность укоренившихся представлений о биологической полноценности пищи.

Практический опыт врачей и клинические наблюдения издавна с несомненностью указывали на существование ряда специфических заболеваний, непосредственно связанных с дефектами питания, хотя последнее полностью отвечало указанным выше требованиям. Об этом свидетельствовал также многовековой практический опыт участников длительных путешествий. Настоящим бичом для мореплавателей долгое время была цинга; от нее погибало моря ков больше, чем, например, в сражениях или от кораблекрушений. Так, из 160 участников известной экспедиции Васко да Гамма прокладывавшей морской путь в Индию,100 человек погибли от цинги.

История морских и сухопутных путешествий давала также ряд поучительных примеров, указывавших на то, что возникновение цинги может быть предотвращено, а цинготные больные могут быть вылечены, если в их пищу вводить известное количество лимонного сока или отвара хвои.

Таким образом, практический опыт ясно указывал на то, что цинга и некоторые другие болезни связанны с дефектами питания, что даже самая обильная пища сама по себе еще далеко не всегда гарантирует от подобных заболеваний и что для предупреждения и лечения таких заболеваний необходимо вводить в организм какие-то дополнительные вещества, которые содержаться не во всякой пище.

Экспериментальное обоснование и научно-теоретическое обобщение этого многовекового практического опыта впервые стали возможны благодаря открывшем новую главу в науке исследованием русского ученого Николая Ивановича Лунина, изучавшего в лаборатории Г. А. Бунге роль минеральных веществ в питании.

Н. И. Лунин проводил свои опыты на мышах, содержавшихся на искусственно приготовленной пище. Эта пища состояла из смеси очищенного казеина(белок молока),жира молока, молочного сахара, солей, входящих в состав молока и воды. Казалось, налицо были все необходимые составные части молока; между тем мыши, находившееся на такой диете, не росли, теряли в весе, переставали поедать даваемый им корми, наконец, погибали. В то же время контрольная партия мышей, получившая натуральное молоко, развивалась совершенно нормально. На основании этих работ Н. И. Лунин в 1880 г. пришел к следующему заключению:"...если, как вышеупомянутые опыты учат, невозможно обеспечить жизнь белками, жирами, сахаром, солями и водой, то из этого следует, что в молоке, помимо казеина, жира, молочного сахара и солей, содержатся еще другие вещества, незаменимые для питания. Представляет большой интерес исследовать эти вещества и изучить их значение  для питания".

Это было важное научное открытие, опровергавшее установившееся положения в науке о питании. Результаты работ Н. И. Лунина стали оспариваться; их пытались объяснить, например, тем, что искусственно приготовленная пища, которой он в своих опытах кормил животных, была якобы невкусной.

В 1890 г. К.А. Сосин повторил опыты Н. И. Лунина с иным вариантом искусственной диеты и полностью подтвердил выводы Н. И. Лунина. Все же и после этого безупречный вывод не сразу получил всеобщее признание.

Блестящим подтверждением правильности вывода Н. И. Лунина установлением причины болезни бери-бери, которая была особенно широко распространена в Японии и Индонезии среди населения, питавшегося главным образом полированным рисом.

Врач Эйкман, работавший в тюремном госпитале на острове Ява, в 1896 году подметил, что куры, содержавшиеся во дворе госпиталя и питавшиеся обычным полированным рисом, страдали заболеванием, напоминающим бери-бери. После перевода кур на питание неочищенным рисом болезнь проходила.

Наблюдения Эйкмана, проведенные на большом числе заключенных в тюрьмах Явы, также показали, что среди людей, питавшихся очищенным рисом, бери-бери заболевал в среднем один человек из 40,тогда как в группе людей, питавшихся неочищенным рисом, ею заболевал лишь один человек из 10000.

Таким образом, стало ясно, что в оболочке риса (рисовых отрубях) содержится какое-то неизвестное вещество, предохраняющее от заболевания бери-бери. В 1911 году польский ученый Казимир Функ выделил это вещество в кристаллическом виде(оказавшееся, как потом выяснилось, смесью витаминов);оно было довольно устойчивым по отношению к кислотам и выдерживало, например, кипячение с 20%-ным раствором серной кислоты. В щелочных растворах активное начало, напротив, очень быстро разрушалось. По своим химическим свойствам это вещество принадлежало к органическим соединениям и содержало аминогруппу. Функ пришел к заключению, что бери-бери является только одной из болезней, вызываемых отсутствием каких-то особых веществ в пище.

Несмотря на то,что эти особые вещества присутствуют в пище,как подчеркнул ещё Н. И. Лунин,в малых количествах, они являются жизненно необходимыми. Так как первое вещество этой группы жизненно необходимых соединений содержало аминогруппу и обладало некоторыми свойствами аминов, Функ  (1912) предложил назвать весь этот класс веществ витаминами (лат. Vita - жизнь, vitamin-амин жизни). Впоследствии, однако, оказалось, что многие вещества этого класса не содержат аминогруппы. Тем не менее термин "витамины" настолько прочно вошел в обиход, что менять его не имело уже смысла.

После выделения из пищевых продуктов вещества, предохраняющего от заболевания бери-бери, был открыт ряд других витаминов. Большое значение в развитии учения о витаминах имели работы Гопкинса, Степпа, Мак Коллума, Мелэнби и многих других учёных.

В настоящее  время известно около 20 различных витаминов. Установлена и их химическая структура; это дало возможность организовать промышленное производство витаминов не только путём переработки продуктов, в которых они содержаться в готовом виде, но и искусственно, путём их химического синтеза.


ПОТРЕБНОСТЬ В ВИТАМИНАХ (АВИТАМИНОЗ, ГИПОВИТАМИНОЗ, ГИПЕРВИТАМИНОЗ)

Сейчас мы радуемся солнечным денькам, частым прогулкам на свежем воздухе и предстоящим каникулам. Но даже летом, в этот, казалось бы, благополучный с точки зрения обеспеченности витаминами период времени года, нам необходимо следить за тем, чтобы их поступало в достатке. Так, бета-каротин, витамины С и Е защищают клетки от вредного воздействия солнца, озона и агрессивных кислородосодержащих молекул, которые образуются в организме при повышенной активности солнца. В жаркие дни, при повышенном потоотделении, организм интенсивно теряет минеральные вещества, которые нужно восполнять. В таблице вы найдете наиболее подходящие продукты питания для летнего сезона.

В процентах представлено покрытие суточной потребности в витамине на 100 г продукта.

Продукт Бета-каротин Витамин С Витамин Е
Абрикос Витамин Е -20 процентов
Клубника Витамин С - 50 процентов
Дыня Бета-каротин - 50 процентов Витамин С - 20 процентов
Морковь Бета-каротин - 100 процентов
Перец Бета-каротин - 20 процентов Витамин С - 100 процентов Витамин Е - 20 процентов
Сыр
Зеленый горох Витамин С - 20 процентов
Тыквенные семечки Витамин Е - 50 процентов
Черная смородина Витамин С - 100 процентов
Кедровые орехи Витамин Е - 100 процентов

 

 

 

 

Рекомендуемые нормы потребления витаминов для различных групп населения (мг в сутки)

(разработаны Институтом питания и утверждены Министерством здравоохранения, 1991 г.)

Группа

С

А

Е

D, мкг

В1

В2

В6

Ниацин

Фоли- евая кислота, мкг

В12, мкг

Дети
0-12 мес. 30- 40 0,4 3-4 10 0.3- 0.5 0.4- 0.6 0.4- 0.6 5-7 40- 60 0.3- 0.5
1-3 года 45 0,45 5 10 0,8 0,9 0,9 10 100 1.0
4-10 лет 50- 60 0.5- 0.7 7- 10 2,5 0.9- 1.2 1.0- 1.4 1.3- 1.6 11- 15 200 1.5- 2.0
11-17 лет, мальчики 70 1.0 12- 15 2,5 1.4- 1.5 1.7- 1.8 1.8- 2.0 18- 20 200 3.0
девочки 70 0,8 10- 12 2,5 1,3 1,5 1,6 17 200 30
Взрослые
мужчины 70- 100* 1.0 10 2,5 1.2- 2.1* 1.5- 2.4 2.0 16- 28* 200 3.0
женщины 70- 80* 0.8- 1.0 8 2,5 1.1- 1.5* 1.3- 1.8 1,8 14- 20* 200 3.0
Беременные и кормящие - дополнительно к норме 20- 40 0.2- 0.4 2-4 10 0.4- 0.6 0.3- 0.5 0.3- 0.5 2-5 100- 200 1.0
Пожилые (старше 60 лет)
мужчины 80 1.0 15 2,5 1.2- 2.4 1.4- 1.6 2,2 15- 18 200 3
женщины 80 0,8 12 2,5 1.1- 1.3 1.3- 1.5 2.0 13- 16 200 3

*) в зависимости от физической активности и энергозатрат

Болезни, которые возникают вследствие отсутствия в  пище  тех  или иных  витаминов, стали  называть  авитаминозами. Если  болезнь возникает вследствие отсутствия нескольких витаминов, её  называют  поливитамино- зом. Однако типичные по своей клинической картине авитаминозы в настоящее время встречаются довольно редко. Чаще приходиться иметь дело с относительным недостатком какого-либо витамина; такое заболевание называется гиповитаминозом. Если правильно и своевременно поставлен диагноз, то авитаминозы и особенно гиповитаминозы легко излечить введением в организм соответствующих витаминов.

Чрезмерное введение в организм некоторых витаминов может вызвать заболевание, называемое гипервитаминозом.

В настоящее время многие изменения в обмене веществ при авитаминозе рассматривают как следствие нарушения ферментных систем. Известно, что многие витамины входят в состав ферментов в качестве компонентов их простетических или коферментных групп.

Многие авитаминозы можно рассматривать как патологические состояния, возникающие на почве выпадения функций тех или других коферментов. Однако в настоящее время механизм возникновения многих авитаминозов ещё неясен, поэтому пока ещё не представляется возможность трактовать все авитаминозы как состояния, возникающие на почве нарушения функций тех или иных коферментных систем.

С открытием витаминов и выяснением их природы открылись новые перспективы не только в предупреждении и лечении авитаминозов, но и в области лечения инфекционных заболеваний. Выяснилось, что некоторые фармацевтические препараты (например, из группы сульфаниламидных) частично напоминают по своей структуре и по некоторым химическим признакам витамины, необходимые для бактерий, но в то же время не обладают свойствами этих витаминов. Такие "замаскированные под витамины" вещества захватываются бактериями, при этом блокируются активные центры бактериальной клетки, нарушается её обмен и происходит гибель бактерий.


КЛАССИФИКАЦИЯ ВИТАМИНОВ

В настоящее время витамины можно охарактеризовать как низкомолекулярные органические соединения, которые, являясь необходимой составной частью пищи, присутствуют в ней в чрезвычайно малых количествах по сравнению с основными ее компонентами.

Витамины - необходимый элемент пищи для человека и ряда живых организмов потому, что они не синтезируются или некоторые из них синтезируются в недостаточном количестве данным организмом. Витамины - это вещества, обеспечивающее нормальное течение биохимических и физиологических процессов в организме. Они могут быть отнесены к группе биологически активных соединений, оказывающих свое действие на обмен веществ в ничтожных концентрациях.

Витамины делят на две большие группы: 1. витамины, растворимые в жирах, и 2. витамины, растворимые в воде. Каждая из этих групп содержит большое количество различных витаминов, которые обычно обозначают буквами латинского алфавита. Следует обратить внимание, что порядок этих букв не соответствует их обычному расположению в алфавите и не вполне отвечает исторической последовательности открытия витаминов.

В приводимой классификации витаминов в скобках указаны наиболее характерные биологические свойства данного витамина - его способность предотвращать развития того или иного заболевания. Обычно названию заболевания предшествует приставка "анти", указывающая на то, что данный витамин предупреждает или устраняет это заболевание.

1. ВИТАМИНЫ, РАСТВОРИМЫЕ В ЖИРАХ.

Витамин A (антиксерофталический).

Витамин D (антирахитический).

Витамин E (витамин размножения).

Витамин K (антигеморрагический).

2. ВИТАМИНЫ, РАСТВОРИМЫЕ В ВОДЕ.

Витамин В1 (антиневритный).

Витамин В2 (рибофлавин).

Витамин PP (антипеллагрический).

Витамин В6 (антидермитный).

Пантотен  (антидерматитный фактор).

Биотин   (витамин Н, фактор роста для грибков, дрожжей и бактерий, антисеборейный).

Инозит.

Парааминобензойная кислота (фактор роста бактерий и фактор пигментации).

Фолиевая кислота (антианемический витамин, витамин роста для цыплят и бактерий).

Витамин В12 (антианемический витамин).

Витамин В15 (пангамовая кислота).

Витамин С  (антискорбутный).

Витамин Р  (витамин проницаемости).

Многие относят также к числу витаминов холин и непредельные жирные кислоты с двумя и большим числом двойных связей.  Все вышеперечисленные - растворимые в воде - витамины, за исклдючением инозита и витаминов С и Р, содержат азот в своей молекуле, и их часто объединяют в один комплекс витаминов группы В.

ВИТАМИН А

Основные положения

Синонимы: Ретинол, аксерофтол.

Основные источники в природе

 Витамин А, жирорастворимый витамин, встречается в природе в двух основных видах - в виде ретинола, содержащегося только в животных источниках, и определенных каротиноидов (провитаминов), содержащихся только в растительных источниках. Каротиноиды - это те соединения, которые придают многим фруктам и овощам желтую и оранжевую окраску. Бета-каротин является наиболее распространенным и известным среди каротиноидов. Бета-каротин является предшественником витамина А или "провитамином А", поскольку его активность витамина А проявляется только после трансформации в ретинол в организме. Расщепление одной молекулы бета-каротина специфическим кишечным ферментом приводит к образованию двух молекул витамина А.

 Большое количество бета-каротина содержится в моркови, желто- и зелено-листных овощах (например, шпинате, брокколи), тыкве, абрикосах и дыне. Преобразованный витамин А или ретинол содержится в печени, яичном желтке, рыбе, цельном молоке, сливочном масле и сыре.

 

Витамин В1

Основные сведения

Синонимы: Тиамин, фактор против бери-бери, анеурин, противоневритный фактор.

Основные природные источники

Витамин В1 содержится в различных продуктах, но, в основном, в небольших количествах. Более всего тиамина содержится в сушеных пивных дрожжах. Другими источниками тиамина являются мясо (свинина, баранина, говядина), птица, цельные зерновые злаки, орехи, бобовые растения, сушеные бобы и животная пища.

В процессе перемола пшеницы в белую муку или при полировки коричневого риса с образованием белого риса зерна злаковых теряют тиамин, содержащийся в отрубях.

Человек

Человек и другие приматы нуждаются в постоянном поступлении в организм витамина В1 вместе с пищей.

Основные антагонисты

Ряд продуктов, такие как кофе, чай, свежая рыба, орехи бетеля и некоторые злаковые, действуют как антагонисты данного витамина.

 Медицинские препараты, вызывающие головокружение, потерю аппетита, повышение кишечной функции или мочевыделение, приводят к снижению количества тиамина в организме.

Отравления мышьяком или другими тяжелыми металлами вызывают неврологические симптомы недостатка тиамина. Эти металлы блокируют важный метаболический этап, включающий тиамин в качестве кофермента.

Витамин В12

Основные положения

Синонимы

 Витамин В12 относится к группе кобальтосодержащих корриноидов, известных как кобаламины. Он также известен как фактор против пернициозной анемии, экзогенный фактор Кастла, или животный белковый фактор. Наиболее важными в организме человека кобаламинами являются гидроксикобаламин, аденозилкобаламин и метилкобаламин, последние два представляют собой активные формы кофермента. Цианокобаламин является синтетической формой витамина В12, благодаря своей доступности и стабильности получившей широкое клиническое применение. В организме человека цианокобаламин превращается в активные формы кофермента.

Основные природные источники

Витамин В12 содержится преимущественно в продуктах животного происхождения, в особенно в отдельных органах (печень, почки, сердце, мозги). Другим важным источником витамина В12 являются рыба, яйца и молочные продукты.

В продуктах растительного происхождения витамин В12 практически отсутствует. Кишечные бактерии синтезируют витамина В12, но в обычных условиях осуществляют этот синтез в тех областях, где всасывание не происходит.

Витамин В2

Основные сведения

Синонимы: Официально признанное название витамина В2 - рибофлавин. Ранее он также назывался витамин G, лактофлавин, овофлавин, гепатофлавин, вердофлавин и урофлавин. Большинство из этих названий указывают на источник, из которого данный витамин был исходно выделен, т.е. молоко, яйца, печень, растения и моча.

Основные природные источники

Рибофлавин является одним из наиболее широко распространенных витаминов. Рибофлавин содержится во всех клетках животных и растений, но лишь немногие продукты являются богатыми источниками данного витамина. Наибольшая концентрация рибофлавина обнаруживается в дрожжах и печени, но наиболее распространенными диетическими источниками рибофлавина являются молоко и молочные продукты, мясо, яйца, овощи и зелень. Зерна злаков, хотя и содержат не слишком много рибофлавина, являются важными источниками данного витамина для тех, у кого злаковые составляют основной компонент пищевого рациона. Витаминизированная мука и мучные изделия позволяют получать достаточное количество витамина В2. Рибофлавин из животных продуктов усваивается лучше, чем из растительных источников. В коровьем, овечьем и козьем молоке не менее 90% рибофлавина находится в свободной форме, в большинстве других источников он обнаруживается связанным с белками.

Витамин В6

Основные сведения

Синонимы: Термин витамин В6 или пиридоксин используется для обозначения целой группы родственных веществ, взаимозаменяемых в процессе метаболизма, а именно: пиридоксол (спирт), пиридоксаль (альдегид) и пиридоксамин (амин). Основные природные источники

В пищевых продуктах витамин В6 обычно связан с белками. Пиридоксол обнаруживается главным образом в растениях, а пиридоксаль и пиридоксамин главным образом обнаруживаются в животных тканях. Превосходными источниками пиридоксина являются цыплята, коровья печень, свинина и телятина. Хорошими источниками пиридоксина также являются ветчина и рыба (тунец, форель, палтус, сельдь, лосось), орехи (арахис, грецкий орех), хлеб, крупа и цельные зерна злаковых. В целом овощи и фрукты достаточно бедны витамином В6, хотя некоторые из продуктов этого класса содержат пиридоксин в весьма значительном количестве, в частности фасоль, цветная капуста, бананы и изюм.

Человек

Человек и другие приматы для удовлетворения потребностей своего организма нуждаются во внешних источниках витамина В6, поступающего вместе с пищей. Незначительное количество витамина В6 может синтезироваться кишечными бактериями.

Основные антагонисты

Известно более 40 различных медицинских препаратов, способных взаимодействовать с витамином В6 и приводить к снижению его статуса в организме. Основными антагонистами витамина В6 являются:

·        дезоксипиридоксин, эффективный аниметаболит;

·        изоцианид, туберкулостатический препарат;

·        гидралазин, препарат против повышенной чувствительности;

·        циклосерин, антибиотик; и

·        пенициламин, препарат используемый при лечении болезни Вильсона.

 С другой стороны, витамин В6 может сам выступать в качестве антагониста у пациентов, страдающих болезнью Паркинсона и проходящих лечение препаратом L-дофа, при этом действие пиридоксина оказывается противоположным действию L-дофа.

Бета-каротин

Основные сведения

Бета-каротин является одним из природных каротиноидов, которых насчитывается свыше 600. Каротиноиды - это пигменты от желтого до красного цвета, которые широко распространены в растениях. Порядка 50 каротиноидов способны воспроизводить активность витамина А и поэтому их относят к числу каротиноидов, являющихся провитамином А. Бета-каротин - наиболее распространенный и наиболее эффективный провитамин А в наших продуктах.

 Теоретически одна молекула бета-каротина может расщепляться на две молекулы витамина А. Однако в организме бета-каротин только частично превращается в витамин А, а оставшаяся часть накапливается в неизменном виде. Более того, доля бета-каротина, превращающегося в витамин А в организме, контролируется статусом витамина А, что в результате позволяет избежать явлений токсичности, вызванной избытком витамина А в организме. Согласно полученным в настоящее время данным бета-каротин, являясь безопасным источником витамина А, выполняет еще много важных биологических функций, которые могут быть никак не связаны с его статусом провитамина.

Основные природные источники

Наилучшими источниками бета-каротина являются ярко-желтые/оранжевые овощи и фрукты и темно-зеленые листовые овощи, а именно:

·        Желтые/оранжевые овощи - морковь, батат, тыква, кабачки.

·        Желтые/оранжевые овощи - абрикосы, дыня мускусная, папайя, манго, карамболь, нектарин, персики.

·        Темно-зеленые листовые овощи - шпинат, брокколи, салат эндивий, капуста, цикорий, салат эскариоль, кресс водяной зеленые листья свеклы, репы, горчицы, одуванчика лекарственного.

·        Другие овощи и фрукты, являющиеся хорошими источниками бета-каротина - тыква обыкновенная, аспарагус, зеленый горошек, кислые сорта вишен, слива домашняя.

Содержание бета-каротина в овощах и фруктах может быть различным в зависимости от сезона и степени зрелости. Биологическая ценность бета-каротина из овощей и фруктов зависит от их метода приготовления перед употреблением. Поэтому всякие указания относительно содержания бета-каротина в продуктах являются лишь приблизительными величинами.

Биотин

Основные сведения

Синонимы

Биотин - водорастворимый член группы витаминов В, известный также под названиями витамин Н, витамин В8 и кофермент R. Хотя существуют восемь различных форм биотина, только одна из них, а именно, D-биотин, встречается в природных соединениях и проявляет полный спектр биологической активности.

Основные природные источники

В малых количествах биотин обнаруживается в большинстве пищевых продуктов. Наиболее богатыми его источниками являются дрожжи, печень и почки. Также много его содержится в яичном желтке, соевых бобах, орехах и крупах. Данные, полученные в экспериментах на животных, демонстрируют, что биологическая доступность биотина варьируется в значительных пределах.

Микроорганизмы, вырабатывающие биотин, находятся в толстом кишечнике, но роль и масштаб его энтерального синтеза во всём метаболизме биотина не известны.

Основные антагонисты

 Авидин, гликопротеин, содержащийся в белке сырого яйца, связывается с биотином и делает его неабсорбируемым. Таким образом, всасывание больших количеств сырого яичного белка кишечником в течение долгого времени может привести к дефициту биотина.

 Отмечалось также, что применение антибактериальных препаратов, вредящих микрофлоре кишечника может понизить уровень биотина. В то же время, результаты испытаний на людях не дают возможности утверждать это категорически. Сообщается также о взаимодействии биотина с некоторыми противосудорожными препаратами.

Витамин C

Основные сведения

Синонимы

Аскорбиновая кислота, противоскорбутный витамин.

Основные природные источники

Цитрусовые, черная смородина, сладкий перец, петрушка, цветная капуста, картофель, батат, брокколи, брюссельская капуста, земляника, гуава, манго. В зависимости от сезона в одном стакане среднего размера (т.е., 100 г) свежеприготовленного сока содержится от 15 до 35 мг витамина С.

Основные антагонисты

Ряд химических соединений, действию которых подвергается человек, такие, как загрязнители воздуха, промышленные токсины, тяжелые металлы, табачный дым, а также некоторые фармакологически активные соединения, в частности, антидепрессанты и диуретики могут привести к увеличению потребности в витамине С. Это также имеет место в при наличии определенных вредных привычек, например, при злоупотреблении алкоголем.

Витамин D

Основные сведения

Синонимы

Витамин D - общее название группы жирорастворимых соединений, необходимых для поддержания минерального баланса в организме. Он также известен как кальциферол и противорахитический витамин. Его основными формами являются витамин D2 (эргокальциферол растительного происхождения) и витамин D3 (холекальциферол животного происхождения).

Поскольку холекальциферол синтезируется в коже при воздействии ультрафиолетовых лучей на 7-дегидрохолестерин, производное холестерина, содержащееся в животном жире, витамин D не соответствует классическому определению витамина.

Тем не менее в силу целого ряда факторов, оказывающих влияние на его синтез, к числу которых относятся широта, сезон, степень загрязнения воздуха, участок кожи, подвергаемый ультрафиолетовому воздействию, пигментация, возраст и т. д., витамин D считается важнейшим компонентом продуктов питания.

Основные природные источники

Богатейшими природными источниками витамина D являются рыбий жир и морская рыба типа сардин, сельди, лосося и скумбрии. Небольшое количество витамина D содержится также в яйцах, мясе, молоке и сливочном масле. В растениях содержится скудное количество витамина D, а в орехах и фруктах его нет вовсе. Того количества витамина D, которое содержится в грудном молоке, не достаточно для восполнения потребностей организма новорожденного.

Основные антагонисты

Холестирамин (смола, используемая для прекращения реабсорбции желчных кислот) и слабительные на основе минеральных масел угнетают абсорбцию витамина D из кишечника. Кортикостероидные гормоны, противосудорожные препараты и спирт могут влиять на абсорбцию кальция путем уменьшения реакции на витамин D. Исследования на животных также показали, что противосудорожные препараты стимулируют ферменты в печени, что приводит к усиленному разрушению и выводу витамина.

Витамин Е

Основные сведения

Под названием витамин Е известны восемь встречающихся в природе соединений. Четыре из них называются токоферолами, а четыре - токотриенолами, и все они различаются с помощью префиксов a-, b-, g- и d. Альфа-токоферол - наиболее распространенный и биологически наиболее активный из всех встречающихся в природе форм витамина Е.

Название токоферол происходит от греческого слова "токос", означающего роды, и слова "ферейн", означающего рождать. Данное название было выбрано таким образом, чтобы подчеркнуть его важную роль в воспроизводстве различных видов животных. Окончание "ол" означает, что вещество является спиртом.

Основные природные источники

Растительные масла (арахисовое, соевое, пальмовое, кукурузное, сафлоровое, подсолнечное и т. д.) и зародыши пшеницы являются наиболее ценными источниками витамина Е. К числу других источников витамина Е относятся орехи, семена, цельные зерна и зеленые листовые овощи. Некоторые основные продукты питания типа молока и яиц содержат небольшое количество a-токоферола.

 К тому же витамин Е добавляют в маргарин и другие продукты питания.

Основные антагонисты

При одновременном приеме железо уменьшает поступление витамина Е в организм; это особенно критично в случае анемии у новорожденных. Потребность в витамине Е связана с количеством полиненасыщенных жирных кислот, поступающих с пищей. Чем больше количество таких кислот, тем больше потребность в витамине Е.

 

Фолиевая кислота

Основные сведения

Синонимы

Фолиевая кислота (химическое наименование: птероил-глютаминовая кислота) относится к группе витаминов В. Она известна также под названием фолацин, витамин ВС, витамин В9 , а также фактор Lactobacillus casei, хотя в настоящее время эти наименования вышли из употребления.

Термин "фолаты" используется для обозначения всех членов семейства соединений, в которых птероевая кислота связана с одной или более молекул L-глютамата.

Основные источники в природе

Фолаты широко представлены в разнообразных пищевых продуктах. Наиболее богатым источником являются печень, темно-зеленые листовые овощи, бобы, пшеничные проростки и дрожжи. Среди других источников можно назвать яичный желток, свеклу, апельсиновый сок, хлеб (мука из цельного зерна).

Большая часть пищевых фолатов находится в полиглютаматной форме, которые, прежде чем попасть в кровяное русло, преобразуются в стенке малого кишечника в моноглютаматную форму. Фактически адсорбируется только около пятидесяти процентов фолатов, потребляемых с пищей. В обычных условиях фолаты, синтезируемые кишечными бактериями, не вносят существенного вклада в обеспечение фолатами организма человека, так как бактериальный синтез фолатов обычно ограничен толстым кишечником (ободочная кишка), тогда же как абсорбция происходит главным образом в верхней части тонкого кишечника (тощая кишка).

Основные антагонисты

 Ряд хемиотерапевтических агентов (например, метотрексат, триметоприм, пириметамин) ингибируют фермент дигидрофолат редуктазу, которая необходима для метаболизма фолатов.

 Многие лекарства могут влиять на абсорбцию, утилизацию и сохранность фолатов. Среди этих лекарств находятся пероральные контрацептивы, алкоголь, холестирамин (лекарство, применяемое для понижения уровня холестерина в крови), такие антиэпилептические агенты как барбитураты и дифенилгидантоин, а также сульфазалазин, который является одним из сульфонамидов, используемых для лечения неспецифического язвенного колита. Кроме того, лекарства, снижающие кислотность в кишечнике, такие как антациды и современные противоязвенные лекарства, как было показано, влияют на абсорбцию фолиевой кислоты.

 

Витамин К

Основные сведения

Синонимы

Витамин К известен во многих формах. Витамин К1 (филлохинон, фитонадион) обычно содержится в растениях. Витамин К2 (менахинон), обладающий примерно 75 % активности витамина К1, синтезируется бактериями в кишечнике человека и различных животных. Витамин К3 (менадион) является синтетическим веществом, которое может быть преобразовано в К2 в кишечнике.

Основные природные источники

Наилучшими пищевыми источниками витамина К являются зеленые листовые овощи такие, как зеленая ботва репы, шпинат, брокколи, капуста и латук. К числу других источников с высоким содержанием витамина К относятся соевые бобы, говяжья печень и зеленый чай. Хорошими источниками являются яичный желток, овес, цельная пшеница, картофель, помидоры, аспарагус, сливочное масло и сыр. Более низкое содержание витамина К обнаруживается в говядине, свинине, ветчине, молоке, моркови, кукурузе, у большинства фруктов и многих других овощей.

Важным источником витамина К2 является бактериальная флора в тощей кишке и подвздошной кишке. Однако степень использования менахинона, синтезированного микроорганизмами кишечника, до сих пор не ясна.

Основной антагонист

Антикоагулянты такие, как дикумароль, 4-гидроксикумароль (производное дикумароля) и инданедионы снижают использование зависимых от витамина К факторов свертываемости.

Антибиотики, болезни кишечника, минеральное масло и радиация подавляют всасывание витамина К. Большое количество витамина Е может усилить антикоагулянтное действие антагонистов витамина К таких, как варфарин. У пациентов с синдромом пониженного всасывания жиров или заболеваниями печени также есть риск развития недостаточности витамина К.

Страницы: 1, 2


© 2010 САЙТ РЕФЕРАТОВ