бесплано рефераты

Разделы

рефераты   Главная
рефераты   Искусство и культура
рефераты   Кибернетика
рефераты   Метрология
рефераты   Микроэкономика
рефераты   Мировая экономика МЭО
рефераты   РЦБ ценные бумаги
рефераты   САПР
рефераты   ТГП
рефераты   Теория вероятностей
рефераты   ТММ
рефераты   Автомобиль и дорога
рефераты   Компьютерные сети
рефераты   Конституционное право
      зарубежныйх стран
рефераты   Конституционное право
      России
рефераты   Краткое содержание
      произведений
рефераты   Криминалистика и
      криминология
рефераты   Военное дело и
      гражданская оборона
рефераты   География и экономическая
      география
рефераты   Геология гидрология и
      геодезия
рефераты   Спорт и туризм
рефераты   Рефераты Физика
рефераты   Физкультура и спорт
рефераты   Философия
рефераты   Финансы
рефераты   Фотография
рефераты   Музыка
рефераты   Авиация и космонавтика
рефераты   Наука и техника
рефераты   Кулинария
рефераты   Культурология
рефераты   Краеведение и этнография
рефераты   Религия и мифология
рефераты   Медицина
рефераты   Сексология
рефераты   Информатика
      программирование
 
 
 

строение воды как физического тела - гидрофизика

2.Температура замерзания воды с увеличением давления понижается, а не повышается, как это следовало бы ожидать.

Примечание. Этой аномалией можно объяснить существование жидкой воды на больших глубинах в морях при температуре, значительно ниже 0°С.

3.Температура замерзания (0°С) и кипения (100°С) дистиллированной воды аномальна по сравнению с температурой гидридов, входящих в одну с кислородом группу Периодической системы Д.И.Менделеева: серы — H2S, селена — H2Se, теллура — H2Te (замерзание при - 90°С, а кипение при - 70°С). Вода при нормальном давлении кипит при температуре +1000С, а замерзает при 00С — это известно всем. Но согласно ее расположению в Периодической таблице Менделеева она должна кипеть при -800... -900С, а замерзать при -1000С. Отклонение от «нормы» объясняют необычно сильным взаимодействием между собой ее молекул (кроме воды подобными аномальными свойствами, но в меньшей мере обладают аммиак и фтористый водород). Нормальным состоянием воды, исходя из имеющихся на Земле условий, должно быть газообразное состояние.

Исходя из теории антенн, аномальную температуру кипения и замерзания воды можно объяснить и тем, что она за счет высокой «направленности» своих антенн увеличивает прочность внутренних связей, поэтому для их разрыва требуется большая энергия.

4.Удельная теплоемкость воды (4,18 Дж/(гК)) в 5 — 10 раз больше удельной теплоемкости других природных веществ. Укажем для сравнения значения удельной теплоемкости некоторых веществ (Дж/(гК)): песок 0,79; известняк 0,88; хлорид натрия 0,88; глицерин 2,43; этиловый спирт 2,85. Лишь у немногих веществ (литий, древесина) она несколько приближается к удельной теплоемкости воды.

Примечание. Благодаря высокой теплоемкости вода является мощнейшим энергоносителем на нашей планете. Поэтому в ночное время, а также при переходе от лета к зиме вода остывает медленно, а днем или при переходе от зимы к лету так же медленно нагревается, являясь, таким образом, регулятором температуры на земном шаре.

5.Удельная теплоемкость воды уменьшается при повышении температуры, тогда как у других веществ (кроме ртути) она увеличивается. При этом уменьшение удельной теплоемкости воды происходит при температуре от 0 до 37°С, а затем она увеличивается (у ртути она непрерывно уменьшается).

6.Удельная теплота плавления льда необыкновенно высокая и в среднем равна 333·103 Дж/кг. Вода и лед при 0°С различаются между собой по содержанию скрытой энергии на 333·103 Дж. С понижением температуры удельная теплота плавления не увеличивается, а уменьшается примерно на 2,1 Дж на 1°С.

Примечание. При плавлении льда объем, занимаемый водой, уменьшается, следовательно, давление понижает температуру плавления льда. Это вытекает из принципа Ле Шателье. Действительно, пусть лед и жидкая вода находятся в равновесии при 0°С. При увеличении давления равновесие, согласно принципу Ле Шателье, сместится в сторону образования той фазы, которая при той же температуре занимает меньший объем. Этой фазой является в данном случае жидкость. Таким образом, возрастание давления при 0°С вызывает превращение льда в жидкость, а это и означает, что температура плавления льда снижается.

7.Вязкость воды с ростом давления уменьшается, а не увеличивается, как следовало бы ожидать по аналогии с другими жидкостями. Водородные связи в жидкой воде непрерывно образуются и рвутся, причем эти процессы протекают кооперативно в пределах короткоживущих групп молекул воды, названных “мерцающими кластерами”. Их время жизни оценивают в диапазоне от 10-10 до 10-11 с. Такое представление правдоподобно объясняет высокую степень подвижности жидкой воды и ее низкую вязкость

8.Диэлектрическая проницаемость ε у воды чрезвычайно велика и равна 81 (у льда при t = -5°С εл = 73), тогда как у большинства других веществ она составляет 2—8 и лишь у некоторых достигает 27—35 (спирты).

Примечание. Вследствие этого вода обладает большей растворяющей и диссоциирующей способностью, чем другие жидкости.

9.Коэффициент преломления света водой n = 1,333 для длины волны λ=580 http://www.msuee.ru/html2/med_gidr/P1.files/image002.gifнм и при t = 20°С, вместо требуемого теорией значения

10.Удельная теплоемкость водяного пара до температуры t = 500°C отрицательна, т. е. пар при сжатии остается прозрачным, а при разрежении превращается в туман (сгущается).

11.Удельная теплота парообразования воды при понижении температуры увеличивается, достигая при 0°С очень высокого значения (25,0·105 Дж/кг).

12.Вода обладает самым высоким поверхностным натяжением среди жидкостей (0,0727 H/м при 20°С), за исключением ртути (0,465 H/м).

Может ли вода течь вверх? Вода может подниматься вверх на очень большую высоту по очень тоненьким трубочкам — капиллярам («туннелям»), смачивая их стенки.

Жидкость, смачивающая стенки капилляров, например, вода в стеклянной трубке образует вогнутый мениск, а несмачивающая, например, ртуть в той же трубке - выпуклый мениск.

Смачивающие свойства воды проявляются при подъеме грунтовых вод из толщи земли, и при питании растений, и при движении по порам промокательной бумаги или по тряпочке, опущенной в сосуд с водой. Эта объясняется ее повышенным (по сравнению с другими жидкостями) поверхностным натяжением. Каждая молекула на поверхности втягивается во внутрь жидкости. В результате возникает сила, стягивающая поверхность жидкости.

Сила поверхностного натяжения поддерживает бегающих по поверхности воды насекомых, лапки которых водой не смачиваются. Эта сила придает мыльному пузырю, падающей капле, и любому количеству жидкости в условиях невесомости форму шара. Она же поднимает воду в почве и по любым капиллярам, стенки которых, наоборот, хорошо смачиваются водой.

Гипотеза 5.10: Незамерзание воды в бутылках, помещенных внутрь пирамиды Голода, при обычных минусовых температурах является следствием вовлечения содержащихся в воде солей в мощное направленное вихревое движение, создаваемое сконцентрированными в пирамиде полями, и (или) выпадения их в осадок. Первое, как и быстрое течение реки, а второе из-за большей чистоты воды препятствует ее замерзанию. Быстрое замерзание воды после встряхивания бутылки является следствием нарушения упорядоченного вихревого движения (уменьшения вследствие этого его скорости) и (или) «загрязнения» воды выпавшими ранее солями, что перемещает точку замерзания воды в область более высоких температур, соизмеримых с температурой в пирамиде.

Как льется и капает вода в воду? Если посмотреть на конец очень тонкой водяной струи то можно наблюдать, что на поверхности струи возникают волнообразные упругие усиливающиеся колебания. Затем образуется тонкая перетяжка, которая разрывается. Утолщение струи, находящееся перед перетяжкой, превращается в каплю, а то, что было перетяжкой, оттягивается и становится маленькой капелькой. Под действием поверхностного натяжения капля колеблется (дышит), то вытягивается, то, снова расширясь, сплющивается. Ее колебания помогли физикам разгадать тайну атомного ядра, которое по некоторым своим свойствам аналогично капле воды.

Наблюдения за каплей воды дают весьма интересную информацию. Например, капля воды, упавшая в спокойную воду, превращается в вихревое кольцо. Это кольцо сверху сначала напоминает замкнутый контур, в котором «бьется» стоячая волна. Затем оно расширяется, в нем возникают утолщения, которые развиваются во вторичные вихревые колечки. Процесс повторяется, число колечек растет. И капля превращается в сложную систему вихревых потоков. При этом образуются самые разные геометрические формы. Разные формы вода образует не только при своем падении в воду. Она, как известно, и «камень точит», деформируя своим потоком грунт и создавая себе русло которое, углубляясь, постепенно меняет форму дна от узкого конусообразного (вверху) до почти плоского (внизу), плавно переходя через многие другие формы.

«Понять природу этих аномалий более чем важно, - говорит стэнфордский физик Андерс Нильсон, под руководством которого недавно завершилось еще одно интересное исследование, посвященное «странностям» воды, - ведь вода – обязательная основа нашего собственного существования: нет воды – нет жизни. Наша работа позволяет объяснить эти аномалии на молекулярном уровне, при температурах, подходящих для жизни».


5. Фазовые превращения и диаграмма состояния воды

Диаграмма состояния (или фазовая диаграмма) представляет собой графическое изображение зависимости между величинами, характеризующими состояние системы, и фазовыми превращениями в системе (переход из твердого состояния в жидкое, из жидкого в газообразной и т. д.). Диаграммы состояния широко применяются в химии. Для однокомпонентных систем обычно используются диаграммы состояния, показывающие зависимость фазовых превращений от температуры и давления, они называются диаграммами состояния в координатах Р---Т

На рисунке 5 приведена в схематической форме диаграмма состояния воды. Любой точке на диаграмме отвечают определенные значения температуры и давления.

Диаграмма состояния воды

В жидком состоянии – вода

 Твёрдом – лёд

 Газообразном – пар

Рис.5.1

Диаграмма показывает те состояния воды, которые термодинамически устойчивы при определенных значениях температуры и давления. Она состоит из трех кривых, разграничивающих все возможные температуры и давления на три области, отвечающие льду, жидкости и пару.

лед = пар (кривая ОА)

лед = жидкость (кривая ОВ)

жидкость = пар (кривая ОС)

О – точка замерзания воды

Для воды критическая температура равна 374 градусов по цельсию. При нормальном давлении жидкая и парообразная фазы воды находятся между собой в равновесии при 100 градусов по цельсию, т.к. при этом давление пара над жидкостью сравнивается с внешним давлением и вода закипает. Пересечение трех кривых происходит в точке О – тройной точке, в которой все три фазы находятся между собой в равновесии.

Рассмотрим каждую из кривых более подробно. Начнем с кривой ОА, отделяющей область пара от области жидкого состояния. Представим себе цилиндр, из которого удален воздух, после чего в него введено некоторое количество чистой, свободной от растворенных веществ, в том числе от газов, воды; цилиндр снабжен поршнем, который закреплен в некотором положении. Через некоторое время часть воды испарится, и над ее поверхностью будет находиться насыщенный пар. Можно измерить его давление и убедиться в том, что оно не изменяется с течением времени и не зависит от положения поршня. Если увеличить температуру всей системы и вновь измерить давление насыщенного пара, то окажется, что оно возросло. Повторяя такие измерения при различных температурах, найдем зависимость давления насыщенного водяного пара от температуры. Кривая ОА представ-ляет собой график этой зависимости: точки кривой показывают те пары значений температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друг с другом -- сосуществуют. Кривая ОА называется кривой равновесия жидкость--пар или кривой кипения. В таблице 5 приведены значения давления насыщенного водяного пара при нескольких температурах.


Таблица 5

Температура

Давление насыщенного пара Температура Давление насыщенного пара
кПа мм рт. ст. кПа мм рт. ст.
0 0,61 4,6 50 12,3 92,5
10 1,23 9,2 60 19,9 149
20 2,34 17,5 70 31,2 234
30 4,24 31,8 80 47.4 355
40 7,37 55,3 100 101,3 760

Молекулярная физика воды в трех ее агрегатных состояниях

http://www.msuee.ru/html2/med_gidr/l1_2.files/image002.gif

Рис.5.2 Диаграмма агрегатных состояний воды в области тройной точки А. I — лед. II — вода. III — водяной пар.

Вода встречается в природных условиях в трех состояниях: твердом — в виде льда и снега, жидком — в виде собственно воды, газообразном — в виде водяного пара. Эти состояния воды называют агрегатными состояниями, или же соответственно твердой, жидкой и парообразной фазами. Переход воды из одной фазы в другую обусловлен изменением ее температуры и давления. На рис. приведена диаграмма агрегатных состояний воды в зависимости от температуры t и давления P. Из рис.5.2 видно, что в области I вода находится только в твердом виде, в области II — только в жидком, в области III — только в виде водяного пара. Вдоль кривой AC она находится в состоянии равновесия между твердой и жидкой фазами (плавление льда и кристаллизация воды); вдоль кривой AB — в состоянии равновесия между жидкой и газообразной фазами (испарение воды и конденсация пара); вдоль кривой AD — в равновесии между твердой и газообразной фазами (сублимация водяного пара и возгонка льда).

Равновесие фаз по рис.5.2 вдоль кривых AB, АС и AD надо понимать как динамическое равновесие, т. е. вдоль этих кривых число вновь образующихся молекул одной фазы строго равно числу вновь образующихся молекул другой фазы.

Если, например, постепенно охлаждать воду при любом давлении, то в пределе окажемся на кривой AC, где будет наблюдаться вода при соответствующих температуре и давлении. Если постепенно нагревать лед при различном давлении, то окажемся на той же кривой равновесия АС, но со стороны льда. Аналогично будем иметь воду и водяной пар, в зависимости от того, с какой стороны будем подходить к кривой AB.

Все три кривые агрегатного состояния — АС (кривая зависимости температуры плавления льда от давления), АВ (кривая зависимости температуры кипения воды от давления), AD (кривая зависимости давления пара твердой фазы от температуры) — пересекаются в одной точке A, носящей название тройной точки. По современным исследованиям, значения давления насыщающих паров и температуры в этой точке соответственно равны: P = 610,6 Па (или 6,1 гПа = 4,58 мм рт. ст.), t = 0,01°C (или T = 273,16 К). Кроме тройной точки, кривая АВ проходит еще через две характерные точки — точку, соответствующую кипению воды при нормальном давлении воздуха с координатами P = 1,013·105 Па и t = 100°C, и точку с координатами P = 2,211·107 Па и tкр = 374,2°C, соответствующими критической температуре — температуре, только ниже которой водяной пар можно перевести в жидкое состояние путем сжатия.

Кривые АС, АВ, AD относящиеся к процессам перехода вещества из одной фазы в другую, описываются уравнением Клапейрона—Клаузиуса:

http://www.msuee.ru/html2/med_gidr/l1_2.files/image004.gif(1.1)

где T — абсолютная температура, отвечающая для каждой кривой соответственно температуре испарения, плавления, сублимации и т. д.; L — удельная теплота соответственно испарения, плавления, сублимации; V2 – V1 — разность удельных объемов соответственно при переходе от воды ко льду, от водяного пара к воде, от водяного пара ко льду. Подробное решение этого уравнения относительно давления насыщенного водяного пара e0 над поверхностью воды — кривая AB и льда — кривая AD, можно найти в курсе общей метеорологии.

Непосредственный опыт показывает, что природные воды суши при нормальном атмосферном давлении переохлаждаются (кривая AF) до некоторых отрицательных значений температуры не кристаллизуясь. Таким образом, вода обладает свойством переохлаждаться, т.е. принимать температуру ниже точки плавления льда. Переохлажденное состояние воды является состоянием метастабильным (неустойчивым), в котором начавшийся в какой-либо точке переход жидкой фазы в твердую продолжается непрерывно, пока не будет ликвидировано переохлаждение или пока не превратится в твердое тело вся жидкость. Способность воды принимать температуру ниже точки плавления льда была обнаружена впервые Фаренгейтом еще в 1724 г.

Таким образом, ледовые кристаллы могут возникать только в переохлажденной воде. Переход переохлажденной воды в твердое состояние – лед, происходит только при наличии в ней центров (ядер) кристаллизации, в качестве которых могут выступать взвешенные частицы наносов, находящиеся в воде, кристаллики льда или снега, поступающие в воду из атмосферы, кристаллики льда, образующиеся в переохлажденной воде в результате ее турбулентного поступательного движения, частицы других веществ, присутствующих в водной толще.

http://www.msuee.ru/html2/med_gidr/l1_2.files/image006.gif

Рис.5.3 Фазовая диаграмма воды.

Ih, II — IX — формы льда; 1 — 8 — тройные точки.

Переохлаждение воды – термодинамическое состояние, при котором температура воды оказывается ниже температуры ее кристаллизации. Возникает это состояние в результате понижения температуры воды или же повышения температуры ее кристаллизации. Температура воды может быть понижена отводом тепла, что наиболее часто встречается в природе, или смешением ее с соленой, например морской, водой. Температура кристаллизации может быть повышена путем понижения давления.

Таким образом, диаграмму агрегатных состояний воды — сплошная линия AD на рис.5.3— следует рассматривать как относящуюся к очень малым тепловым нагрузкам, когда влияние времени на преобразование фазы мало. При больших тепловых нагрузках процесс фазовых преобразований будет происходить согласно штриховой кривой AF.

Температура плавления льда (кривая AC) очень слабо зависит от давления. Практически кривая AC параллельна горизонтальной оси: при изменении давления от 610,6 до 1,013·105 Па температура плавления уменьшается всего лишь от 0,01 до 0°С. Однако эта температура понижается с увеличением давления только до определенного значения, затем она повышается и при очень высоком давлении достигает значения порядка 450°С (рис.5.3) Как следует из рис., при высоком давлении лед может находиться и при положительной температуре. Насчитывают до десяти различных форм льда. Форма льда Ih, для которой характерно понижение температуры плавления с увеличением давления, соответствует обычному льду, образующемуся вследствие замерзания воды при нормальных условиях. Структура и физические свойства всех форм льда существенно отличаются от льда Ih.

Твердое тело (лед), как и жидкость, испаряется в широком диапазоне значений температуры и непосредственно переходит в газообразное состояние (возгонка), минуя жидкую фазу, — кривая AD. Обратный процесс, т. е. переход газообразной формы непосредственно в твердую (сублимация), осуществляется, также минуя жидкую фазу. Возгонка и сублимация льда и снега играют большую роль в природе.

Современная модель воды

Особенности физических свойств воды и многочисленные короткоживущие водородные связи между соседними атомами водорода и кислорода в молекуле воды создают благоприятные возможности для образования особых структур-ассоциатов (кластеров), воспринимающих, хранящих и передающих самую различную информацию.

Одна из первых моделей воды – модель Фрэка и Уэна [Frank & Wen, 1957]. В соответствии с ней водородные связи в жидкой воде непрерывно образуются и рвутся, причем эти процессы протекают кооперативно в пределах короткоживущих групп молекул воды, названных “мерцающими кластерами”. Их время жизни оценивают в диапазоне от 10-10 до 10-11 с. Такое представление правдоподобно объясняет высокую степень подвижности жидкой воды и ее низкую вязкость. Считается, что благодаря таким свойствам вода служит одним из самых универсальных растворителей.

Однако модель “мерцающих кластеров” не может объяснить множество уже давно известных фактов, и тех, что стали стремительно нарастать в последнее время.

Но во второй половине XX века возникли две группы „смешанных“ моделей: кластерные и клатратные. В первой группе вода представала в виде кластеров из молекул, связанных водородными связями, которые плавали в море молекул, в таких связях не участвующих. Модели второй группы рассматривали воду как непрерывную сетку (обычно в этом контексте называемую каркасом) водородных связей, которая содержит пустоты; в них размещаются молекулы, не образующие связей с молекулами каркаса. Нетрудно было подобрать такие свойства и концентрации двух микрофаз кластерных моделей или свойства каркаса и степень заполнения его пустот клатратных моделей, чтобы объяснить все свойства воды, в том числе и знаменитые аномалии.

Среди кластерных моделей наиболее яркой оказалась модель Г. Немети и Х. Шераги: предложенные ими картинки, изображающие кластеры связанных молекул, которые плавают в море несвязанных молекул, вошли во множество монографий.

Модель клатратного типа предложил О.Я. Самойлов в 1946 году: в воде сохраняется подобная гексагональному льду сетка водородных связей, полости которой частично заполнены мономерными молекулами. Л. Полинг в 1959 году создал другой вариант, предположив, что основой структуры может служить сетка связей, присущая некоторым кристаллогидратам.

В течение второй половины 60-х годов и начала 70-х наблюдается сближение всех этих взглядов. Появлялись варианты кластерных моделей, в которых в обеих микрофазах молекулы соединены водородными связями. Сторонники клатратных моделей стали допускать образование водородных связей между пустотными и каркасными молекулами.

В 1990 г. чл.-корр. АН СССР Г.А. Домрачев (Ин-т металлоорганической химии РАН) и физик Д.А. Селивановский (Ин-т прикладной физики РАН) сформулировали гипотезу о существовании механохимических реакций радикальной диссоциации воды [Домрачев, 1995]. Они исходили из того, что жидкая вода представляет собой динамически нестабильную полимерную систему и что по аналогии с механохимическими реакциями в полимерах при механических воздействиях на воду поглощенная водой энергия, необходимая для разрыва Н-ОН, локализуется в микромасштабной области структуры жидкой воды. Реакцию разрыва Н-ОН связи можно записать так: (Н2О)n(Н2О...H-|-OH) (Н2О)m + E (Н2О)n+1(H ) + ( OH) (Н2О)m, где “ E” обозначает не спаренный электрон.

Поскольку диссоциация молекул воды и реакции с участием радикалов H и OH происходит в ассоциированном состоянии жидкой воды, радикалы могут иметь громадные (десятки секунд и более) продолжительности жизни до гибели в результате реакций рекомбинации [Blough et al., 1990].

Таким образом, существуют достаточно убедительные свидетельства в пользу того, что в жидкой воде присутствуют весьма устойчивые полимерные структуры. В 1993 году американский химик Кен Джордан предложил свои варианты устойчивых “квантов воды”, которые состоят из 6 её молекул [Tsai & Jordan, 1993]. Эти кластеры могут объединяться друг с другом и со “свободными” молекулами воды за счет экспонированных на их поверхности водородных связей. Интересной особенностью этой модели является то, что из нее автоматически следует, что свободно растущие кристаллы воды, хорошо известные нам снежинки должны обладать 6лучевой симметрией.

В 2002 году группе д-ра Хэд-Гордона методом рентгеноструктурного анализа с помощью сверхмощного рентгеновского источника Advanced Light Source (ALS) удалось показать, что молекулы воды способны за счет водородных связей образовывать структуры - "истинные кирпичики" воды, представляющие собой топологические цепочки и кольца из множества молекул.

Другая исследовательская группа Нильссона из синхротронной лаборатории всё того же Стенфордского университета, интерпретируя полученные экспериментальные данные как наличие структурных цепочек и колец, считает их довольно долгоживущими элементами структуры.

Несмотря на то, что разные модели предлагают отличающиеся по своей геометрии кластеры, все они постулируют, что молекулы воды способны объединяться с образованием полимеров. Но классический полимер – это молекула, все атомы которой объединены ковалентными связями, а не водородными, которые до недавнего времени считались чисто электростатическими. Однако в 1999 г. было экспериментально показано, что водородная связь между молекулами воды во льду имеет частично (на 10%) ковалентный характер [Isaacs E. D., et al.,1999]. Даже частично ковалентный характер водородной связи “разрешает”, по меньшей мере, 10% молекул воды объединяться в достаточно долгоживущие полимеры (неважно, какой конкретной структуры). А если в воде есть полимеры воды, то даже слабые воздействия на абсолютно чистую воду, а тем более ее растворы, могут иметь важные последствия.

В химии полимеров хорошо известен тот факт, что под действием механических напряжений, в частности – звуковой обработки, растяжения, продавливания полимера через тонкие отверстия, молекулы полимеров могут “рваться”. В зависимости от строения полимера, условий, в которых он находится, эти разрывы сопровождаются либо образованием новых беспорядочных связей между “обрывками” исходных молекул, либо уменьшением их молекулярной массы. Такие процессы служат, в частности, причиной старения полимеров. Редко уточняют, что фрагментация полимеров при подобных воздействиях – явление нетривиальное. Так, например, интактные молекулы ДНК, составленных из сотен тысяч и миллионов мономеров-нуклеотидов, легко распадаются на более мелкие фрагменты от простого перемешивания препарата палочкой. При этом, чем меньше фрагменты, тем более высокой плотности требуется энергия для дальнейшего дробления. Во всех случаях – и в длинных и в коротких полимерах разрываются химически идентичные ковалентные связи. Следовательно, если для разрыва ковалентной связи между двумя атомами в малой молекуле необходимо приложить энергию, эквивалентную энергии кванта УФ- или по меньшей мере видимого света, то такая же связь в полимере может разорваться при воздействии на него механических колебаний. В первом случае частота колебаний соответствует величинам порядка 1015 Гц, во втором – герцам – килогерцам. Значит, молекула полимера может выступать в роли своеобразного трансформатора энергии низкой плотности в энергию высокой плотности. Образно говоря, полимеры превращают тепло в свет. А тогда, если жидкая вода может хоть в какой-то степени рассматриваться как квази-полимер, то и в ней могут осуществляться подобные процессы.

Способность молекул воды образовывать определенные структуры, основана на наличии так называемых водородных связей. Эти связи не химической природы. Они легко разрушаются и быстро восстанавливаются, что делает структуру воды исключительно изменчивой. Именно благодаря этим связям в отдельных микрообъемах воды непрерывно возникают своеобразные ассоциаты воды, её структурные элементы. Связь в таких ассоциатах называется водородной. Она является очень слабой, легко разрушаемой, в отличие от ковалентных связей, например, в структуре минералов или любых химических соединений.

Интересно, что свободные, не связанные в ассоциаты молекулы воды присутствуют в воде лишь в очень небольшом количестве. В основном же вода – это совокупность беспорядочных ассоциатов и «водяных кристаллов», где количество связанных в водородные связи молекул может достигать сотен и даже тысяч единиц.

«Водяные кристаллы» могут иметь самую разную форму, как пространственную, так и двухмерную (в виде кольцевых структур). В основе же всего лежит тетраэдр (простейшая пирамида в четыре угла). Именно такую форму имеют распределенные положительные и отрицательные заряды в молекуле воды. Группируясь, тетраэдры молекул H2O образуют разнообразные пространственные и плоскостные структуры. И из всего многообразия структур в природе базовой, судя по всему (пока лишь не точно доказанное предположение) является всего одна – гексагональная (шестигранная), когда шесть молекул воды (тетраэдров) объединяются в кольцо.

Такой тип структуры характерен для льда, снега, талой воды, клеточной воды всех живых существ.

Каждая молекула воды в кристаллической структуре льда участвует в 4 водородных связях, направленных к вершинам тетраэдра. В центре этого тетраэдра находится атом кислорода, в двух вершинах — по атому водорода, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей. При взаимодействии протона одной молекулы с парой неподеленных электронов кислорода другой молекулы возникает водородная связь, менее сильная, чем связь внутримолекулярная, но достаточно могущественная, чтобы удерживать рядом соседние молекулы воды. Каждая молекула может одновременно образовывать четыре водородные связи с другими молекулами под строго определенными углами, равными 109°28', направленных к вершинам тетраэдра, которые не позволяют при замерзании создавать плотную структуру (при этом в структурах льда I, Ic, VII и VIII этот тетраэдр правильный).

Когда лёд плавится, его тетрагональная структура разрушается и образуется смесь полимеров, состоящая из три-, тетра-, пента-, и гексамеров воды и свободных молекул воды. Схематически этот процесс показан ниже.

Рис.6.2 Структура жидкой воды. В воде кластеры периодически разрушаются и образуются снова. Время перескока составляет 10-12 секунд.

Изучить строение этих образующихся полимеров воды оказалось довольно сложно, поскольку вода – смесь различных полимеров, которые находятся в равновесии между собой. Сталкиваясь друг с другом, полимеры переходят один в другой, разлагаются и вновь образуются.

Разделить эту смесь на отдельные компоненты тоже практически невозможно. Лишь в 1993 году группа исследователей из Калифорнийского университета (г. Беркли, США) под руководством доктора Р.Дж.Сайкалли расшифровала строение триммера воды, в 1996 г. – тетрамера и пентамера, а затем и гексамера воды. К этому времени уже было установлено, что жидкая вода состоит из полимерных ассоциатов (кластеров), содержащих от трех до шести молекул воды.

На рисунке 6.3показано строение три-, тетра-, пента-, и гексамера воды. Все они цикличны, т. е. образуют довольно устойчивые «кольца».

Более сложным оказалось строение гексамера. Самая простая структура – шесть молекул воды в вершинах шестиугольника, – как выяснилось, не столь прочна, как структура клетки. Более того, структуры призмы, раскрытой книги или лодки тоже оказались менее устойчивыми. В шестиугольнике может быть только шесть водородных связей, а экспериментальные данные говорят о наличии восьми. Это значит, что четыре молекулы воды связаны перекрёстными водородными связями.

Структуры кластеров воды были найдены и теоретически, сегодняшняя вычислительная техника позволяет это сделать. Более того, именно сопоставлением экспериментально найденных и рассчитанных параметров удалось доказать, что полимеры имеют то строение, которое описано выше.

В 1999 г. Станислав Зенин провёл совместно с Б. Полануэром (сейчас в США) исследование воды в ГНИИ генетики, которые дали интереснейшие результаты. Применив современные методы анализа, как-то рефрактометрического, протонного резонанса и жидкостной хроматографии исследователям удалось обнаружить полиассооциаты - "кванты" воды.

Объединяясь друг с другом, кластеры могут образовывать более сложные структуры.

Кластеры, содержащие в своём составе 20 молекулу оказались более стабильными.

Согласно гипотезе С.В. Зенина вода представляет собой иерархию правильных объемных структур "ассоциатов" (clathrates), в основе которых лежит кристаллоподобный "квант воды", состоящий из 57 ее молекул, которые взаимодействуют друг с другом за счет свободных водородных связей. При этом 57 молекул воды (квантов), образуют структуру, напоминающую тетраэдр. Тетраэдр в свою очередь состоит из 4 додекаэдров (правильных 12-гранников). 16 квантов образуют структурный элемент, состоящий из 912 молекул воды. Вода на 80% состоит из таких элементов, 15% - кванты-тетраэдры и 3% - классические молекулы Н2О. Таким образом, структура воды связана с так называемыми платоновыми телами (тетраэдр, додекаэдр), форма которых связана с золотой пропорцией. Ядро кислорода также имеет форму платонова тела (тетраэдра).

Элементарной ячейкой воды являются тетраэдры, содержащие связанные между собой водородными связями четыре (простой тетраэдр) или пять молекул Н2О (объемно-центрированный тетраэдр).

Рис.6.7 Тетраэдр

При этом у каждой из молекул воды в простых тетраэдрах сохраняется способность образовывать водородные связи. За счет их простые тетраэдры могут объединяться между собой вершинами, ребрами или гранями, образуя различные кластеры со сложной структурой, например, в форме додекаэдра.

Рис.6.8 Додекаэдр

Таким образом, в воде возникают стабильные кластеры, которые несут в себе очень большую энергию и информацию крайне высокой плотности. Порядковое число таких структур воды так же высоко, как и порядковое число кристаллов (структура с максимально высоким упорядочением, которую мы только знаем), потому их также называют «жидкими кристаллами» или «кристаллической водой». Такая структура энергетически выгодна и разрушается с освобождением свободных молекул воды лишь при высоких концентрациях спиртов и подобных им растворителей [Зенин, 1994]. "Кванты воды" могут взаимодействовать друг с другом за счет свободных водородных связей, торчащих наружу из вершин “кванта” своими гранями. При этом возможно образование уже двух типов структур второго порядка. Их взаимодействие друг с другом приводит к появлению структур высшего порядка. Последние состоят из 912 молекул воды, которые по модели Зенина практически не способны к взаимодействию за счет образования водородных связей. Этим и объясняется, например, высокая текучесть жидкости, состоящей из громадных полимеров. Таким образом, водная среда представляет собой как бы иерархически организованный жидкий кристалл.

Изменение положения одного структурного элемента в этом кристалле под действием любого внешнего фактора или изменение ориентации окружающих элементов под влиянием добавляемых веществ обеспечивает, согласно гипотезе Зенина, высокую чувствительность информационной системы воды. Если степень возмущения структурных элементов недостаточна для перестройки всей структуры воды в данном объеме, то после снятия возмущения система через 30-40 мин возвращается в исходное состояние. Если же перекодирование, т. е. переход к другому взаимному расположению структурных элементов воды оказывается энергетически выгодным, то в новом состоянии отражается кодирующее действие вызвавшего эту перестройку вещества [Зенин, 1994]. Такая модель позволяет Зенину объясненить "память воды" и ее информационные свойства [Зенин, 1997].

В дистиллированной воде кластеры практически электронейтральны. Однако Зенин обнаружил, что их электропроводность можно изменить. Если помешать магнитной мешалкой, связи между элементами клстеров будут разрушены и вода превратится в мертвое, неупорядоченное месиво.

Если поместить в воду предельно малое количество другого вещества (хоть одну молекулу) - кластеры начнут "перенимать" его электромагнитные свойства. Это свойство объясняет чрезвычайно лабильный, подвижный характер их взаимодействия. Его природа обусловлена дальними кулоновскими силами, определяющими новый вид зарядово-комплементарной связи. Именно за счет этого вида взаимодействий осуществляется построение структурных элементов воды в ячейки (клатраты) размером до 0,5-1 микрон. Их можно непосредственно наблюдать при помощи контрастно-фазового микроскопа.

Структурированное состояние воды оказалось чувствительным датчиком различных полей. С. Зенин считает, что мозг, сам состоящий на 90% из воды, может, тем не менее, изменять её структуру.

Опираясь на подобные представления о структуре воды, учёные выяснили интересные подробности. Недавно, как сообщил российские исследователи Высоцкий и Корнилова, развивая идеи Ю.И. Наберухина, провели расчет энергетических характеристик, необходимых для перехода свободных молекул воды из несвязанного состояния в полость клатрата и обратно.

С помощью этих расчетов они показали, что структурой воды - количеством свободных молекул воды в полостях клатратов и вне их, - можно управлять с помощью давления, температуры, магнитного поля и т. д. Причем вода может использоваться для медицинских целей, как самостоятельно, так и в качестве "упаковки" для молекул лекарственных веществ. Такой гипотетической "упаковкой", способной донести лекарства до внутренних органов больного, не растратив их по пути, служат клатраты, в полостях которых могут быть размещены лекарственные молекулы при определенных режимах их приготовления.

В природных условиях полости в клатратах воды могут занимать молекулы природных газов, образуя кристаллогидраты. Наиболее распространенным кристаллогидратом, встречающимся в вечной мерзлоте и на дне морей и океанов, является кристаллогидрат углеводородного газа метана. Он представляет собой массу, похожую на мокрый снег. Такие кристаллогидраты, в принципе, могут использоваться в качестве топлива альтернативного нефти и газу, но, вместе с тем, могут представлять большую опасность для жизни на Земле.

Модель кластерного строения воды имеет много спорных дискутируемых моментов, но отвергать её совершенно несправедливо. Например, Зенин предполагает, что основной структурный элемент воды — кластер из 57 молекул, образованный слиянием четырёх додекаэдров. Они имеют общие грани, а их центры образуют правильный тетраэдр. То, что молекулы воды могут располагаться по вершинам пентагонального додекаэдра, известно давно; такой додекаэдр — основа газовых гидратов. Поэтому ничего удивительного в предположении о существовании таких структур в воде нет, хотя уже говорилось, что никакая конкретная структура не может быть преобладающей и существовать долго. Поэтому странно, что этот элемент предполагается главным и что в него входит ровно 57 молекул. Из шариков, например, можно собирать такие же структуры, которые состоят из примыкающих друг к другу додекаэдров и содержат 200 молекул. Зенин же утверждает, что процесс трёхмерной полимеризации воды останавливается на 57 молекулах. Более крупных ассоциатов, по его мнению, быть не должно. Однако если бы это было так, из водяного пара не могли бы осаждаться кристаллы гексагонального льда, которые содержат огромное число молекул, связанных воедино водородными связями. Совершенно неясно, почему рост кластера Зенина остановился на 57 молекулах. Чтобы уйти от противоречий, Зенин упаковывает кластеры в более сложные образования — ромбоэдры — из почти тысячи молекул, причём исходные кластеры друг с другом водородных связей не образуют. Возникает вопрос почему? Чем молекулы на их поверхности отличаются от тех, что внутри? По мнению Зенина, узор гидроксильных групп на поверхности ромбоэдров и обеспечивает информационые свойства воды. Следовательно, молекулы воды в этих крупных комплексах жёстко фиксированы, и сами комплексы представляют собой твёрдые тела. Такая вода не будет течь, а температура её плавления, которая связана с молекулярной массой, должна быть весьма высокой. Поскольку в основе модели лежат тетраэдрические постройки, её можно в той или иной степени согласовать с данными по дифракции рентгеновских лучей и нейтронов. И хотя модель Зенина может объяснить уменьшение плотности при плавлении — упаковка додекаэдров плотнее, чем лёд, труднее согласуется модель с динамическими свойствами воды — текучестью, большим значением коэффициента самодиффузии, малыми временами корреляции и диэлектрической релаксации, которые измеряются пикосекундами..

Рассматривая все эти модели, нужно чётко представлять, что они – пока не более чем модели, лучше всего объясняющие те или иные аномальные свойства воды.


7. Агрегатные виды льда

Лёд - минерал с химической формулой H2O, представляет собой воду в кристаллическом состоянии.

Химический состав льда: Н - 11,2%, О - 88,8%. Иногда лед содержит газообразные и твердые механические примеси. В природе лёд представлен, главным образом, одной из нескольких кристаллических модификаций, устойчивой в интервале температур от 0 до 80°C, имеющей точку плавления 0°С.

Свойства льда: Лёд бесцветен. В больших скоплениях он приобретает синеватый оттенок. Блеск стеклянный. Прозрачный. Спайности не имеет. Твердость 1,5. Хрупкий. Оптически положительный, показатель преломления очень низкий (n = 1,310, nm = 1,309).

Лёд – кристаллическая модификация воды. По последним данным лёд имеет 14 структурных модификаций. Среди них есть и кристаллические (их большинство) и аморфные модификации, но все они отличаются друг от друга взаимным расположением молекул воды и свойствами. Правда, все, кроме привычного нам льда, кристаллизующего в гексагональной сингонии, образуются в условиях экзотических — при очень низких температурах и высоких давлениях, когда углы водородных связей в молекуле воды изменяются и образуются системы, отличные от гексагональной. Эти условия близки к космическим и не встречаются на Земле. Например, при температуре ниже –110 °С водяные пары выпадают на металлической пластине в виде октаэдров и кубиков размером в несколько нанометров — это так называемый кубический лед. Если температура чуть выше –110 °С, а концентрация пара очень мала, на пластине формируется слой исключительно плотного аморфного льда.

Самое необычное свойство льда — это удивительное многообразие внешних проявлений. При одной и той же кристаллической структуре он может выглядеть совершенно по-разному, принимая форму прозрачных градин и сосулек, хлопьев пушистого снега, плотной блестящей корки льда или гигантских ледниковых масс.

Кристаллическая структура льда похожа на структуру алмаза: каждая молекула Н2O окружена четырьмя ближайшими к ней молекулами, находящимися на одинаковых расстояниях от нее, равных 2,76 ангстрем и размещенных в вершинах правильного тетраэдра. В связи с низким координационным числом структура льда является сетчатой, что влияет на его невысокую плотность(0,917).

В природе лёд представлен, главным образом, одной кристаллической разновидностью, кристаллизующейся в гексагональной решётке, с плотностью 931 кг/м3. Лёд встречается в природе в виде собственно льда (материкового, плавающего, подземного), а также в виде снега, инея и т. д. Поскольку лёд легче жидкой воды, то образуется он на поверхности водоёмов, что препятствует дальнейшему замерзанию воды.

Природный лёд обычно значительно чище, чем вода, так как при кристаллизации воды в первую очередь в решётку встают молекулы воды, а примеси вытесняются в жидкость. Однако, лёд может содержать механические примеси — твёрдые частицы, капельки концентрированных растворов, пузырьки газа. Наличием кристалликов соли и капелек рассола объясняется солоноватость морского льда.

Растущий кристалл льда всегда стремится создать идеальную кристаллическую решетку и вытесняет посторонние вещества. Но в планетарном масштабе именно замечательный феномен замерзания и таяния воды играет роль гигантского очистительного процесса - вода на Земле постоянно очищает сама себя.

Общие запасы льда на Земле около 30 млн. км3. Больше всего льда сосредоточено в Антарктиде, где толщина его слоя достигает 4 км. Также имеются данные о наличии льда на планетах Солнечной системы и в кометах.

Модификации льда

Впервые полиморфизм льда был обнаружен Г. Тамманом в 1900 г. и подробно изучен П. Бриджеменом в 1912 г.

Наиболее изученным является лёд I-й природной модификации. Лёд встречается в природе в виде льда (материкового, плавающего, подземного и т.д.), а также в виде снега, инея и т.д. Он распространён во всех областях обитания человека. Собираясь в огромных количествах, снег и лед образуют особые структуры с принципиально иными, нежели у отдельных кристаллов или снежинок, свойствами. Ледники, ледяные покровы, вечная мерзлота, сезонный снежный покров существенно влияют на климат больших регионов и планеты в целом: скопившийся на полюсах Земли лёд способен вызывать многолетние колебания уровня Мирового океана. Лед имеет столь большое значение для нашей планеты и обитания на ней живых существ, что ученые отвели для него особую среду — криосферу, которая простирает свои владения высоко в атмосферу и глубоко в земную кору.

В связи с широким распространением воды и льда на Земле отличие свойств льда от свойств других веществ играет важную роль в природных процессах. Вследствие меньшей, чем у воды, плотности лёд образует на поверхности воды плавучий покров, предохраняющий реки и водоёмы от донного замерзания. Если бы плотность воды увеличивалась при замерзании, лед оказался бы тяжелее воды и начал тонуть, что привело бы к гибели всех живых существ в реках, озерах и океанах, которые замерзли бы целиком, превратившись в глыбы льда, а Земля стала ледяной пустыней, что неизбежно привело бы к гибели всего живого. Зависимость между скоростью течения и напряжением у поликристаллического льда гиперболическая; при приближённом описании её степенным уравнением показатель степени увеличивается по мере роста напряжения.

Кроме того, скорость течения льда прямо пропорциональна энергии активации и обратно пропорциональна абсолютной температуре, так что с понижением температуры лёд приближается по своим свойствам к абсолютно твёрдому телу. В среднем при близкой к таянию температуре текучесть льда в 106 раз выше, чем у горных пород. Благодаря своей текучести лёд не накопляется в одном месте, а в виде ледников постоянно перемещается.

Лед трудно расплавить, как бы ни странно это звучало. Не будь водородных связей, сцепляющих молекулы воды, он плавился бы при –90°С. При этом, замерзая, вода не уменьшается в объеме, как это происходит с большинством известных веществ, а увеличивается — за счет образования сетчатой структуры льда.

Вследствие очень высокой отражательной способности льда (0,45) и снега (до 0,95) покрытая ими площадь — в среднем за год около 72 млн. км2 в высоких и средних широтах обоих полушарий — получает солнечного тепла на 65% меньше нормы и является мощным источником охлаждения земной поверхности, чем в значительной мере обусловлена современная широтная климатическая зональность. Летом в полярных областях солнечная радиация больше, чем в экваториальном поясе, тем не менее температура остаётся низкой, т. к. значительная часть поглощаемого тепла затрачивается на таяние льда, имеющего очень высокую теплоту таяния.

К другим необычным свойствам льда относят и генерацию электромагнитного излучения его растущими кристаллами. Известно, что большинство растворенных в воде примесей не передается льду, когда он начинает расти; они вымораживается. Поэтому даже на самой грязной луже пленка льда чистая и прозрачная. При этом примеси скапливаются на границе твердой и жидкой сред, в виде двух слоев электрических зарядов разного знака, которые вызывают значительную разность потенциалов. Заряженный слой примесей перемещается вместе с нижней границей молодого льда и излучает электромагнитные волны. Благодаря этому процесс кристаллизации можно наблюдать в деталях. Так, кристалл, растущий в длину в виде иголки, излучает иначе, чем покрывающийся боковыми отростками, а излучение растущих зерен отличается от того, что возникает, когда кристаллы трескаются. По форме, последовательности, частоте и амплитуде импульсов излучения можно определить, с какой скоростью замерзает лед и какая при этом получается ледовая структура.

Лёд II, III и V-й модификации длительное время сохраняются при атмосферном давлении, если температура не превышает —170°С. При нагревании приблизительно до —150°С лёд превращаются в кубический лёд Ic.

При конденсации паров воды на более холодной подложке образуется аморфный лёд. Эта форма льда может самопроизвольно переходить в гексагональный лёд, причём тем быстрее, чем выше температура.

Лёд IV-й модификации является метастабильной фазой льда. Он образуется гораздо легче и особенно стабилен, если давлению подвергается тяжёлая вода.

Кривая плавления льда V и VII исследована до давления 20 Гн/м2 (200 тыс. кгс/см2). При этом давлении лёд VII плавится при температуре 400°С.

Лёд VIII является низкотемпературной упорядоченной формой льда VII.

Лёд IX — метастабильная фаза, возникающая при переохлаждении льда III и по существу представляющая собой его низкотемпературную форму.

Две самых последние модификации льда — XIII и XIV — открыли ученые из Оксфорда совсем недавно, в 2006 году. Предположение о том, что должны существовать кристаллы льда с моноклинной и ромбической решетками, было трудно подтвердить: вязкость воды при температуре –160°С очень высока, и собраться вместе молекулам чистой переохлажденной воды в таком количестве, чтобы образовался зародыш кристалла, трудно. Этого удалось достичь с помощью катализатора — соляной кислоты, которая повысила подвижность молекул воды при низких температурах. В земной природе подобные модификации льда образовываться не могут, но они могут встречаться на замерзших спутниках других планет.

Разгадка структуры льда заключается в строении его молекулы. Кристаллы всех модификаций льда построены из молекул воды H2O, соединённых водородными связями в трёхмерный каркас (рис.7). Молекулу воды можно упрощенно представить себе в виде тетраэдра (пирамиды с треугольным основанием). В её центре находится атом кислорода, в двух вершинах — по атому водорода, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей, поэтому их называют неподеленными.

Каждая молекула участвует в 4 таких связях, направленных к вершинам тетраэдра. При взаимодействии протона одной молекулы с парой неподеленных электронов кислорода другой молекулы возникает водородная связь, менее сильная, чем связь внутримолекулярная, но достаточно могущественная, чтобы удерживать рядом соседние молекулы воды. Каждая молекула может одновременно образовывать четыре водородные связи с другими молекулами под строго определенными углами, равными 109°28', направленных к вершинам тетраэдра, которые не позволяют при замерзании создавать плотную структуру. При этом в структурах льда I, Ic, VII и VIII этот тетраэдр правильный. В структурах льда II, III, V и VI тетраэдры заметно искажены. В структурах льда VI, VII и VIII можно выделить 2 взаимоперекрещивающиеся системы водородных связей. Этот невидимый каркас из водородных связей располагает молекулы в виде сетчатой сетки, по структуре напоминающей соты с полыми каналами. Если лед нагреть, сетчатая структура разрушится: молекулы воды начинают проваливаться в пустоты сетки, приводя к более плотной структуре жидкости, — поэтому вода тяжелее льда.

Лед, который образуется при атмосферном давлении и плавится при 0 °С, — самое привычное, но всё же до конца не понятное вещество. Многое в его структуре и свойствах выглядит необычно. В узлах кристаллической решетки льда атомы кислорода выстроены упорядоченно, образуя правильные шестиугольники, а атомы водорода занимают самые разные положения вдоль связей. Поэтому возможны 6 эквивалентных ориентаций молекул воды относительно их соседей. Часть из них исключается, поскольку нахождение одновременно 2 протонов на одной водородной связи маловероятно, но остаётся достаточная неопределённость в ориентации молекул воды. Такое поведение атомов нетипично, поскольку в твердом веществе все подчиняются одному закону: либо все атомы расположены упорядоченно, и тогда это — кристалл, либо случайно, и тогда это — аморфное вещество. Такая необычная структура может реализоваться в большинстве модификаций льда — I, III, V, VI и VII (и по-видимому в Ic), а в структуре льда II, VIII и IX молекулы воды ориентационно упорядочены. По выражению Дж. Бернала лёд кристалличен в отношении атомов кислорода и стеклообразен в отношении атомов водорода.

Однако самое удивительное в структуре льда заключается в том, что молекулы воды при низких отрицательных температурах и высоких давлениях внутри нанотрубок могут кристаллизоваться в форме двойной спирали, похожей на ДНК. Это было доказано компьютерными экспериментами американских учёных под руководством Сяо Чэн Цзэна в Университете штата Небраска (США).

Вода в моделируемом эксперименте "помещалась" в нанотрубки под высоким давлением, варьирующимися в разных опытах от 10 до 40000 атмосфер. После этого задавали температуру, которая во всех запусках имела значение -23°C. Запас по сравнению с температурой замерзания воды делался в связи с тем, что с повышением давления температура плавления водяного льда понижается. Диаметр нанотрубок составлял от 1,35 до 1,90 нм.

Молекулы воды связываются между собой посредством водородных связей, расстояние между атомами кислорода и водорода равно 96 пм, а между двумя водородами - 150 пм. В твёрдом состоянии атом кислорода участвует в образовании двух водородных связей с соседними молекулами воды. При этом отдельные молекулы воды соприкасаются друг с другом разноимёнными полюсами. Таким образом, образуются слои, в которых каждая молекула связана с тремя молекулами своего слоя и одной из соседнего. В результате, кристаллическая структура льда состоит из шестигранных "трубок" соединенных между собой, как пчелиные соты.

Учёные ожидали увидеть, что вода во всех случаях образует тонкую трубчатую структуру. Однако, модель показала, что при диаметре трубки в 1,35 нм и давлении в 40000 атмосфер водородные связи искривились, приведя к образованию спирали с двойной стенкой. Внутренняя стенка этой структуры является скрученной в четверо спиралью, а внешняя состоит из четырёх двойных спиралей, похожих на структуру молекулы ДНК.

Многообразие льда:

I. Атмосферный лед: снег, иней, град.

Атмосферный лед - ледяные частицы, взвешенные в атмосфере или выпадающие на земную поверхность (твердые осадки), а также ледяные кристаллы или аморфный налет, образующийся на земной поверхности, на поверхности наземных предметов и на летательных аппаратах в воздухе.

Снег - твердые осадки, выпадающие в виде снежинок. Снег выпадает из многих видов облаков, в особенности из слоисто-дождевых (снегопад). Снег - типичный зимний вид осадков, образующий снежный покров.

Иней - тонкий неравномерный слой ледяных кристаллов, образующийся на почве, траве и наземных предметах из водяного пара атмосферы при охлаждении земной поверхности до отрицательных температур, более низких, чем температура воздуха.

Град - атмосферные осадки в виде частичек льда круглой или неправильной формы (градин) размером 5-55 мм. Град выпадает в теплое время года из мощных кучево-дождевых облаков, сильно развитых вверх, обычно при ливнях и грозах.

II. Водный лед (ледяной покров)образующийся на поверхности воды и в массе воды на различной глубине: внутриводный, донный лед.

Ледяной покров - сплошной лед, образующийся в холодное время года на поверхности океанов, морей, рек, озер, искусственных водоемов, а также приносимый из соседних районов. В высокоширотных областях существует круглогодично.

Внутриводный лед- скопление первичных ледяных кристаллов, образующихся в толще воды и на дне водного объекта.

Донный лед - лед, откладывающийся на дне водоема или взвешенный в воде. Донный лед наблюдается на дне рек, морей и небольших озер, на погруженных в воду предметах и в мелких местах. Донный лед образуется при кристаллизации переохлажденной воды, имеет рыхлую пористую структуру.

III. Подземный лед.

Подземные льды - льды, находящиеся в верхних слоях земной коры. Подземные льды встречаются в областях распространения многолетнемерзлых пород. По времени образования различают современный и ископаемый подземный лед, по происхождению:

а). первичный лед, возникающий в процессе промерзания рыхлых отложений;

б). вторичный лед - продукт кристаллизации воды и водяных паров (а) в трещинах (жильный лед), (б) в порах и пустотах (пещерный лед), (в) погребенный лед, формирующийся на земной поверхности, а затем перекрытый осадочными породами.

IV. Наледный лед.

Наледный лед – образуется за счет послойного намораживания воды, поступающей на поверхность ледяного покрова. Наледный лед имеет слоистую структуру с толщиной слоев до нескольких сантиметров, характерен для водотоков в районах с суровым климатом и по оптическим свойствам занимает промежуточное положение между снеговым и водным льдом.

Также лед можно разделить на:

Водный (кристаллический) лед – образован замерзанием чистой воды (без примеси иных ранее образовавшихся видов льда) при понижении температуры поверхностного слоя до точки замерзания. Он преимущественно прозрачный, состоит из столбчатых кристаллов разной толщины, оси которых направлены перпендикулярно к замерзающей поверхности. С точки зрения структуры это кристаллический лед, с выраженной первичной структурой

Шуговый лед - возникает при замерзании воды, содержащей шуговые образования. Он образуется или непосредственно на поверхности воды в период движения шуги, или же путем примерзания последней к нижней поверхности водного или снегового льда при наличии зажора. Шуговый лед содержит обычно много пузырьков воздуха, а также включения взвешенных наносов и грунта, поэтому он менее прозрачен, чем водный и имеет неправильную структуру.

Снежный (снеговой) лед - образуется промерзанием талого снега на поверхности воды при густом снегопаде или же талого снега на льду, пересыщенного водой. Снежный лед имеет зернистую структуру, непрозрачен, содержит большое количество воздушных пузырей.

Игольчатый лед - лед, образующийся при спокойной воде на поверхности реки. Игольчатый лед имеет вид призматических кристаллов с осями, расположенными в горизонтальном направлении, что придает льду слоистое строение.

Серо-белый лед - молодой лед толщиной 15-30 см. Обычно при сжатиях серо-белый лед торосится.

Серый лед - молодой лед толщиной 10-15 см. Обычно при сжатиях серый лед наслаивается.

Сало - поверхностные первичные ледяные образования, состоящие из иглообразных и пластинчатых кристаллов в виде пятен или тонкого сплошного слоя серого цвета.

Забереги - полосы льда, окаймляющие берега рек, каналов, озер и водохранилищ при незамерзшей остальной части водного пространства. Различают первичные забереги, образующиеся у берегов; наносные забереги, возникающие в результате примерзания льда и шуги во время ледохода; остаточные забереги, остающиеся у берегов весной при таянии льда. На озерах и водохранилищах они могут нарастать также за счет льдин, пригнанных к берегу ветром. При сильных ветрах (на водоемах) или течениях (на водотоках) они взламываются и нагромождаются на берега в виде торосов.

В зарубежной литературе встречаются термины «черный лед» и «белый лед». Черный – это лед, образовавшийся при замерзании воды при небольшом количестве рассеивающих включений; такой лед имеет темный цвет. Белый лед образуется при смерзании шуги или снега с большим количеством включений воздуха, характеризуется мелкокристаллической структурой; вследствие рассеяния света такой лед имеет белый цвет.


Заключение

Вода - это и строительный материал, который используется для создания всего живого, и среда, в которой протекают все жизненные процессы, и растворитель, выносящий из организма вредные для него вещества, и уникальный транспорт, снабжающий биологические структуры всем необходимым для нормального протекания в них сложнейших физико-химических процессов. И это всеобъемлющее влияние воды на любую живую структуру может быть не только положительным, но и отрицательным. В зависимости от своего состояния вода может быть как созидателем цветущей жизни, так и ее разрушителем, могильщиком - всё зависит от ее химического и изотопного состава, структурных, биоэнергетических свойств. Не случайно академик И. В. Петрянов сказал: "Вода - это подлинное чудо природы!". Учёные абсолютно правы: нет на Земле вещества, более важного для нас, чем обыкновенная вода, и в тоже время не существует другого такого вещества, в свойствах которого было бы столько противоречий и аномалий, сколько в её свойствах.

«Что такое вода?» - вопрос далеко не простой. Все, о чем было рассказано о ней в данной работе не является исчерпывающим ответом на этот вопрос, а во многих случаях дать ясный ответ на него пока и совсем нельзя. Например, пока остается открытым вопрос о структуре воды, причинах многочисленных аномалий воды и, вероятно, еще о многих свойствах и разновидностях воды, о которых мы даже не подозреваем. Однозначно можно сказать лишь то, что вода - самое уникальное вещество на земле.

Напомним слова нашего гениального соотечественника акад. В. И. Вернадского о том, о "надо ждать особый исключительный характер физико-химических свойств воды среди всех других соединений, который отражается и на ее положении в мироздании и на структуре мироздания".


Список литературы

1. Fletcher N. H., The chemical physics of ice, Camb., 1970;

2. o8ode.ru(публикация работ Мосина Олега)

3. www.ecoz.ru

4. www.okeani.ru

5. Вода, которую мы пьём, Ахматов М. Москва, 2006;

6. Вода питьевая. М.: ИПК Издательство стандартов.

7. Методические указания "Основы гидрофизики", Козлов Д. В. http://www.msuee.ru/html2/med_gidr/lit.html

8. Основы структурного ледоведения, Шумский П. А., М., 1955;

9. Физика льда, Паундер Э. Р., пер. с англ., М., 1967;

10. Чистая вода. Системы очистки и бытовые фильтры. СПб.: Изд. Арлит, 2000 Миклашевский Н.В., Королькова С.В.


Страницы: 1, 2


© 2010 САЙТ РЕФЕРАТОВ