бесплано рефераты

Разделы

рефераты   Главная
рефераты   Искусство и культура
рефераты   Кибернетика
рефераты   Метрология
рефераты   Микроэкономика
рефераты   Мировая экономика МЭО
рефераты   РЦБ ценные бумаги
рефераты   САПР
рефераты   ТГП
рефераты   Теория вероятностей
рефераты   ТММ
рефераты   Автомобиль и дорога
рефераты   Компьютерные сети
рефераты   Конституционное право
      зарубежныйх стран
рефераты   Конституционное право
      России
рефераты   Краткое содержание
      произведений
рефераты   Криминалистика и
      криминология
рефераты   Военное дело и
      гражданская оборона
рефераты   География и экономическая
      география
рефераты   Геология гидрология и
      геодезия
рефераты   Спорт и туризм
рефераты   Рефераты Физика
рефераты   Физкультура и спорт
рефераты   Философия
рефераты   Финансы
рефераты   Фотография
рефераты   Музыка
рефераты   Авиация и космонавтика
рефераты   Наука и техника
рефераты   Кулинария
рефераты   Культурология
рефераты   Краеведение и этнография
рефераты   Религия и мифология
рефераты   Медицина
рефераты   Сексология
рефераты   Информатика
      программирование
 
 
 

Модернизация сотовой сети стандарта GSM с применением технологий GPRS и EDGE

Каждая из ячеек обслуживается своим передатчиком с невысокой выходной мощностью и ограниченным числом каналов связи. Это позволяет без помех использовать повторно частоты каналов этого передатчика в другой, удаленной на значительное расстояние, ячейке. Теоретически такие передатчики можно использовать и в соседних ячейках. Но на практике зоны обслуживания сот могут перекрываться под действием различных факторов, например, вследствие изменения условий распространения радиоволн. Поэтому в соседних ячейках используются различные частоты. Пример построения сот при использовании трех частот F1 - F3 представлен на рис.3.1.


Рисунок 3.1 – Построение сот для трех частот

Группа сот с различными наборами частот называется кластером. Определяющим его параметром является количество используемых в соседних сотах частот. На рис.3.1, например, размерность кластера равна трем. Но на практике это число может достигать пятнадцати.

Рассмотрим расчет для трех разных случаев, когда коэффициент повторного использования частот N=4, 7 и 12.

Отношение сигнал/шум выражается в виде [12]:

, (3.1)

В полной шестигранной сотовой системе, всегда шесть интерферирующих коченелов в сотах в первом ряду (т.е. N=6, рис.3.1). Большинство интерференции коченелов, результат из первого ряда. Способствование со следующих высших рядов количественно меньше 1% от общей интерференции, следовательно, не влияет. Интерференция коченела, может быть с обеих сторон соты. В маленькой системе соты, интерференция будет доминирующим фактором и тепловым шумом можно пренебречь. Соответственно, отношение сигнал/шум [12]:

 , (3.2)

где, - распространение части потерь углового коэффициента и g зависит от места расположения окружающей среды.

Если предположить для упрощения, что Dk одинаково для 6 интерферирующих сот или D=Dk, то (3.2) преобразуется :

, (3.3)

где, , (3.4)


Для системы аналог, использующей FM, стандартный метод сотовой системы определяет отношение сигнал/шум равный 18дБ или выше, основанных на субъективных тестах. Отношение сигнал/шум равный 18дБ это измеренная величина допускаемое к голосовому качеству на сегодняшний день в приемниках сотовой системы.

Используя отношение сигнал/шум равное 18дБ (т.е. 63.1) и g =4, то (3.4) преобразуется:

, (3.5)

Число сот,

, (3.6)

Формула (3.6) означает, что 7-я сота конфигурации повторного использования нуждается в отношении дБ.

Полагаем, что сотовая система в целом с 395, размещенных голосовых каналов частот. Если трафик неизменный в среднем с временем разговора 120 секунд и задержкой 2%, когда сотовая система занята в течении часа.

1)  Количество звонков в час в соте

2)  Значение отношения  в соте с коэффициентом повторного использования равным 4, 7 и 12.

Предположим, всенаправленную антенну с 6 интерференциями в первом ряду и угловой коэффициент потерь равен 40дБ/декада (g=4).

Для коэффициента повторного использования N=4, количество голосовых каналов в соте равняется:

,

,

Используя таблицу Erlang-B для 99 каналов с 2% задержки, Приложение А,

найдем трафик загрузки 87 Эрланга. Предложенная загрузка:

Эрланга,

N звонков/час в соте × 120 секунд

3600 секунд = 85.26,

N звонков/час в соте = 85.26 × 30 =2558

Используя (3.3), можно вычислить значение отношения :

дБ.

Для коэффициента повторного использования N=7, количество голосовых каналов в соте равняется:

,

,

Используя таблицу Erlang-B для 56 каналов с 2% задержки, Приложение А,

найдем трафик загрузки 45.88 Эрланга. Предложенная загрузка:

Эрланга,

N звонков/час в соте × 120 секунд

3600 секунд = 44.96,

N звонков/час в соте = 44.96 × 30 =1349

Используя (3.3), можно вычислить значение отношения :

75=18.7дБ.

Для коэффициента повторного использования N=12, количество голосовых каналов в соте равняется:

33,

,

Используя таблицу Erlang-B для 33 каналов с 2% задержки, Приложение А,

найдем трафик загрузки 24.63 Эрланга. Предложенная загрузка:

Эрланга,

N звонков/час в соте × 120 секунд

3600 секунд = 24.14,

N звонков/час в соте = 24.14 × 30 = 724

Используя (3), можно вычислить значение отношения :

дБ.

Полученные данные сведем в таблицу 3.1.

Коэф. повторного использования

NГОЛ.КАН.

в соте

Звонки в час в соте

,дБ

4 99 2558 14.0
7 56 1349 18.7
12 33 724 23.3

Таблица 3.1.

По полученным результатам, очевидно, что с увеличением номера коэффициента повторного использования частоты с N=4 до N=12, значение отношения сигнал/шум увеличилось с 14дБ до 23.3дБ, т.е. 66.4% улучшения.

Но емкость в соте для звонка уменьшилась с 2558 до 724 звонков в час, т.е. на 72% снижение.


2.4 Расчет зон обслуживания

Исходные данные для расчета

Номинальная мощность передатчика БС, Рн 25 Вт

Средняя рабочая частота, f 960 МГц

Высота приемной антенны,h2 1,4 м

Требуемая напряженность поля сигнала в пункте

приема АС, ЕС 39 дБ

Рельеф местности в зоне обслуживания

Dh1 15 м

Dh2 50 м

Затухание в фильтрах и антенных разделителях, Вф 9дБ

2.4.1 Расчет дальности между базовой станцией (БС) и мобильной абонентской станцией (АС) системы подвижной радиосвязи (радиус зоны 1)

Поскольку высота передающей антенны не задана, будем задаваться различными высотами антенн, чтобы определить радиус обслуживания с тем, чтобы выбрать подходящий вариант размещения БС с учетом местных условий. Задаемся высотами антенны БС:

h1=20, 40, 60 м.

Выбираем тип кабеля.

Кабель выбирается таким образом, чтобы его затухание на данной частоте было минимальным.

Тип кабеля: RG6 - коаксиальный кабель с двойной оплеткой

Параметры:

волновое сопротивление rф=70 Ом;

затухание a=0,2 дБ/м.

Определим затухание фидера, связанное с увеличением его длины на БС для всех высот [3].


Вф=a×lф (дб), (4.1)

где lф=20, 40, 60 м. – длина фидера.

Длина фидера выбирается из того условия, что аппаратура располагается у основания мачты антенны и принимается равной высоте антенны.

Вф=0,2×20 = 4 дБ,

Вф=0,2×40 = 8 дБ,

Вф=0,2×60 = 12 дБ,

Полученные данные занесем в таблицу 1.

Таблица 1.

Высота передающей антенны h1, м

Затухание фидера

,дБ

20 4
40 8
60 12

Выбираем тип антенны БС.

Направленная (секторная) антенна.

Параметры:

раскрыв диаграмма направленности QЕ=60°

коэффициент усиления Dy=16дБ.

Рассчитаем поправку, которая учитывает отличие номинальной мощности передатчика от мощности 1кВт.

, (4.2)

Рассчитаем поправку, учитывающую высоту приемной антенны отличную от 1,5 м.


, (4.3)

Определим поправку, учитывающую рельеф местности следующим образом. График для определения поправки, учитывающей рельеф местности, приведен на рисунке 1. Чтобы определить колебание уровня местности Dh, рисуют рельеф местности и определяют колебание Dh (пример на рисунке 1.а.). Когда Dh отличается от 20 м в ту или другую сторону, следует вносить поправки, определяемые по графикам рисунка 1.б. и рисунка 1.в. Причем коэффициент Врел определим, интерполируя между графиками рисунка 4.1.б. и рисунка 4.1.в [3] для r<100км.

Рисунок 4.1. График для определения поправки, учитывающей рельеф местности.

Тогда поправки для данного случая будут равны:

ВрелDh1= - 6 дБ. ВрелDh2= 0 дБ.

Напряженность поля реально создаваемая передающей станцией БС в пункте приема АС.

Основная расчетная формула:

Е=Ес+Врн+Вф+Вh2+Врел+(a*lф)-Dy, (4.4)

Расчет ведется для всех высот передающей антенны БС и результаты расчета сводятся в таблицу 4.2.

По графику на рисунке 4.2 определяем ожидаемую дальность связи для рассчитанных напряженностей поля при различных высотах передающей антенны БС. Результаты заносим в таблицу 4.2.

Для ВрелDh1= - 6 дБ.

Е=39+16+9+0,3-6+(0,2*20)-16=46,3дБ,

Е=39+16+9+0,3-6+(0,2*40)-16=50,3дБ,

Е=39+16+9+0,3-6+(0,2*60)-16=54,3дБ.

Для ВрелDh2= 0 дБ.

Е=39+16+9+0,3-0+(0,2*20)-16=52,3дБ,

Е=39+16+9+0,3-0+(0,2*40)-16=56,3дБ,

Е=39+16+9+0,3-0+(0,2*60)-16=60,3дБ.

Таблица 4.2

Высота передающей антенны , м

Dh1

Dh2

Напряженность поля E, дБ Ожидаемая дальность связи r, км Напряженность поля E, дБ Ожидаемая дальность связи r, км
20 46,3 7,0 52,3 4,5
40 50,3 6,0 56,3 4,2
60 54,3 5,5 60,3 4,0

Рисунок 4.2 – Кривые для определения дальности связи.

Выбор высоты передающей антенны БС.

Высота антенны h1 выбирается таким образом, чтобы при лучшем варианте Dh1 и при худшем Dh2 получить оптимальную дальность связи, при условии, что расстояние между БС и АС стремится к максимальному, а затраты на кабельное оборудование незначительны.

При расчете принимаем, что оборудование БС остается у основания опоры, а длина антенного фидера lф увеличивается с ростом h1, увеличивая общее затухание фидера.

Из выше изложенных условий выбираем высоту антенны:

h1=20 м, при этом дальность связи составляет 7,0 км в случае, когда рельеф местности Dh1 =15 м.

2.4.2 Расчет дальности между базовой станцией (БС) и мобильной абонентской станцией (АС) системы подвижной радиосвязи при ухудшении параметров СПР (радиус зоны 2)

Расчет ведем для h1=20м учитывая, что напряженность поля Ес2 в пункте приема на 9дБ меньше, чем в зоне 1:

Для Dh1, h1=20 м, Ес1= 46,3

Ес2 = Ес1-9=46,3-9 = 37,3 дБ, (4.4)

Для Dh2, h1=20 м, Ес1=52,3

Ес2 = Ес1-9=52,3-9 = 43,3 дБ, (4.5)

Полученное значение подставим в формулу:

Е=Ес+Врн+Вф+Вh2+Врел+(a*lф)-Dy, (4.6)

Е=37,3+16+9+0,3-6+(0,2*20)-16=44,6дБ,

Е=43,3+16+9+0,3-0+(0,2*20)-16=56,6дБ.

Тогда напряженность поля реально создаваемая передающей станцией БС в пункте приема АС и ожидаемая дальность связи (определенная по графику рисунка 4.2) будут равны.

Таблица 4.3

Высота передающей антенны , м

Dh1

Dh2

Напряженность поля E, дБ Ожидаемая дальность связи r′, км Напряженность поля E, дБ Ожидаемая дальность связи r′, км
20 44,6 8 56,6 3,9

Ширина зоны 2 определяется по формуле:

r″=r′ –r , (4.7)

Таблица 4.4

r″,км

Dh1

Dh2

1 0,6

2.4.3 Расчет дальности между центральной станцией (ЦС) и базовой станцией (БС) (радиус зоны 1)

Для расчета принимаем следующие высоты антенн:

h1= h2=20м.

Рассчитаем поправку, учитывающую высоту приемной антенны отличную от 1,5 м.

, (4.8)

Напряженность поля реально создаваемая передающей станцией ЦС в пункте приема.

Определяем требуемую напряженность поля двух типов антенн.

Cемиэлиментная антенна типа “Волновой канал”.

Параметры:

раскрыв диаграмма направленности QЕ=55°

коэффициент усиления Dy=8дБ.

Значения требуемого сигнала для зоны 1 и 2 берем такие же, как и в техническом задании.

Основная расчетная формула:

Е=Ес+Врн+Вф+Вh2+Врел+ (a*lф)пр+ (a*lф)прм – Dyпр- Dyпрм , (4.9)

По графику на рисунке 2 определяем ожидаемую дальность связи для рассчитанных напряженностей поля. Результаты заносим в таблицу 4.5

Dh1: Е = 39 + 16 + 9 –11,2 - 6 + 8 – 16 - 8 = 30,8 дБ R=18 км

Dh2: Е = 39 + 16 + 9 –11,2 - 0 + 8 – 16 - 8 = 36,8 дБ R=14 км

Таблица 4.5

Dh1

Dh2

Затухание фидера ,дБ

Напряженность поля E, дБ Ожидаемая дальность связи r, км Напряженность поля E, дБ Ожидаемая дальность связи r, км
8 30,8 18 36,8 14

2.4.4 Расчет дальности между центральной станцией (ЦС) и базовой станцией (БС) при ухудшении параметров СПР (радиус зоны 2)

Расчет ведем учитывая, что напряженность поля Ес2 в пункте приема на 9дБ меньше, чем в зоне 1:

Ес2= Ес1-9, (4.10)

Dh1: Ес2 = Ес1-9 = 30,8-9=21,8 дБ.

Dh2: Ес2 = Ес1-9 = 36,8-9=27,8 дБ.

Полученное значение подставим в формулу:

Е=Ес2+Врн+Вф+Вh2+Врел+(a*lф)пр+(a*lф)прм -Dyпр- Dyпрм, (4.11)

Dh1: Е = 21,8 + 16 + 9 - 11,2 - 6 + 8 – 16 - 8 = 13,6 дБ R=39 км

Dh2: Е = 27,8 + 16 + 9 - 11,2 - 0 + 8 – 16 - 8 = 25,6 дБ R=23 км

Тогда напряженность поля реально создаваемая передающей станцией ЦС в пункте приема БС и ожидаемая дальность связи (определенная по графику рисунка 4.2) будут равны.

Таблица 4.6

Dh1

Dh2

Затухание фидера

,дБ

Напряженность поля E, дБ Ожидаемая дальность связи r, км Напряженность поля E, дБ Ожидаемая дальность связи r, км
8 13,6 39 26,6 23

В данной работе были рассчитаны напряженности поля для различных высот антенн и разных условий приема мобильной АС, с учетом всех основных параметров. Далее по кривым определения дальности связи были определены расстояния (радиусы) зон 1 и 2 для различных высот антенн БС. Оказалось, что высота антенны 20м - наиболее оптимальный вариант, т.к. обеспечивает приемлемую дальность связи, при наименьших затратах на кабель и установку мачты.

2.5 Модернизация сети GSM под GPRS

2.5.1 Общая характеристика GPRS

Одним из существенных недостатков сетей сотовой связи стандарта GSM на сегодняшний день является низкая скорость передачи данных (максимум 9.6 кбит/с). Да и сама организация этого процесса далека от совершенства - для передачи данных абоненту выделяется один голосовой канал, а биллинг осуществляется исходя из времени соединения (причем по тарифам, мало отличающимся от речевых).

Для высокоскоростной передачи данных посредством существующих GSM-сетей и была разработана GPRS (General Packet Radio Service - услуга пакетной передачи данных по радиоканалу). Необходимо отметить, что кроме повышения скорости (максимум составляет 171.2 кбит/с), новая система предполагает иную схему оплаты услуги передачи данных - при использовании GPRS расчеты будут производиться пропорционально объему переданной информации, а не времени, проведенному online. К тому же, введение GPRS будет способствовать более бережливому и рациональному распределению радиочастотного ресурса, можно сказать, что "пакеты" данных предполагается передавать одновременно по многим каналам (именно в одновременном использовании нескольких каналов и заключается выигрыш в скорости) в паузах между передачей речи. И только в паузах - голосовой трафик имеет безусловный приоритет перед данными, так что скорость передачи информации определяется не только возможностями сетевого и абонентского оборудования, но и загрузкой сети.

GPRS позволит ввести принципиально новые услуги, которые раньше не были доступны. Прежде всего это мобильный доступ к ресурсам Интернета с удовлетворяющей потребителя скоростью, мгновенным соединением и с очень выгодной системой тарификации. Например, при просмотре с помощью системы GPRS WEB-страницы в Интернете, мы можем изучать содержимое столько, сколько нам необходимо, поскольку платим только за принятую информацию и не платим за время нахождения в сети Интернет (не передавая данные, мы не занимаем каналы сети). При введении повременной оплаты на фиксированных телефонных линиях, тарифы на доступ в Интернет с мобильного GPRS-телефона будут еще более конкурентоспособны. Для тех абонентов, кто уже оценил удобство использования телефонов с WAP - броузером, внедрение технологии GPRS означает практически мгновенную загрузку WAP - страниц на экране телефона и более выгодную систему тарификации.

Для корпоративных пользователей система GPRS может послужить отличным инструментом для обеспечения безопасного и быстрого доступа сотрудников к корпоративным сетям предприятий, к почтовым, информационным серверам, удаленным базам данных. При этом появится возможность получать доступ к корпоративным сетям даже если абонент находится в сети другого GSM оператора, с которым организован GPRS-роуминг.

Технологии GPRS может применяться в системах телеметрии: устройство может быть все время подключено, не занимая при этом отдельный канал. Такая услуга может быть востребована службами охраны, банками для подключения банкоматов и в других областях, в том числе и промышленных. Технология GPRS позволит быстро передавать и получать большие объемы данных, видеоизображения, музыкальные файлы стандарта MP-3 и другую мультимедийную информацию.

В GPRS ни один канал не занимается под передачу данных целиком - и это основное качественное отличие новой технологии от используемых ныне. Разумеется, разработчики GPRS приложили все усилия для того, чтобы установка новой системы "поверх" существующих GSM-сетей оказалась как можно менее обременительной (и разорительной, что немаловажно) для операторов.

Рассмотрим подробнее, какие новые блоки и связи появляются в общей архитектуре системы сотовой связи стандарта GSM с внедрением GPRS, и пользовательское оборудование, способное работать с высокоскоростной пакетной передачей данных. Доработку GSM-сети для предоставления услуг высокоскоростной передачи данных GPRS можно условно разделить на две формы - программную и аппаратную. Если говорить о программном обеспечении, то оно нуждается в замене или обновлении практически всюду - начиная с реестров HLR-VLR и заканчивая базовыми станциями BTS. В частности, вводится режим многопользовательского доступа к временным кадрам каналов GSM, а в HLR, например, появляется новый параметр Mobile Station Multislot Capability (количество каналов, с которыми одновременно может работать мобильный телефон абонента).

2.5.2 Структурная схема и состав GPRS технологии

На рисунке 5.1 представлена структурная схема GPRS технологии, где изображены основные составляющие системы.

Рисунок 5.1 – Структурная схема модернизированной сети GSM под технологию GPRS

Ядро системы GPRS (GPRS Core Network) состоит (рис.5.1) из двух основных блоков - SGSN (Serving GPRS Support Node - узел поддержки GPRS) и GGPRS (Gateway GPRS Support Node - шлюзовой узел GPRS). Остановимся на их функциях более подробно.

SGSN является “мозгом” рассматриваемой системы. В некотором роде SGSN можно назвать аналогом MSC - коммутатора сети GSM. SGSN контролирует доставку пакетов данных пользователям, взаимодействует с реестром собственных абонентов сети HLR, проверяя, разрешены ли запрашиваемые пользователями услуги, ведет мониторинг находящихся online пользователей, организует регистрацию абонентов вновь "проявившихся" в зоне действия сети и т.п. Так же как и MSC, SGSN, в системе может быть и не один - в этом случае каждый узел отвечает за свой участок сети. Например, SGSN производства компании Motorola имеет следующие характеристики: каждый узел поддерживает передачу до 2000 пакетов в секунду, одновременно контролирует до 10000 находящихся online пользователей. Всего же в системе может быть до 18 SGSN Motorola.

Предназначение GGSN можно понять из его названия - это шлюз между сотовой сетью (вернее, ее частью для передачи данных GPRS) и внешними информационными магистралями (Internet, корпоративными интранет-сетями, другими GPRS системами и так далее). Основной задачей GGSN, таким образом, является роутинг (маршрутизация) данных, идущих от и к абоненту через SGSN. Вторичными функциями GGSN является адресация данных, динамическая выдача IP-адресов, а также отслеживание информации о внешних сетях и собственных абонентах (в том числе тарификация услуг).

В GPRS-систему заложена хорошая масштабируемость - при появлении новых абонентов оператор может увеличивать число SGSN, а при эскалации суммарного трафика - добавлять в систему новые GGSN. Внутри ядра GPRS-системы (между SGSN и GGSN) данные передаются с помощью специального туннельного протокола GTP (GPRS Tunneling Protocol).

Еще одной составной частью системы GPRS является PCU (Packet Control Unit - устройство контроля пакетной передачи). PCU стыкуется с контроллером базовых станций BSC и отвечает за направление трафика данных непосредственно от BSC к SGSN.

Но есть и альтернатива такой модернизации, без изменений в контролере (BSC) например компания Alcatel предлагает решение Alcatel EVOLIUM™ MFS 9135 Multi-BSS Fast packet Server (на рис.5.1 обозначен как MFS пунктирной линией) — это специальный сервер GPRS, предназначенный для поддержки существующих базовых станций Evolium BSS. Сервер располагается на площадке MSC или отдельным “рэком”, и поэтому его инсталляция требует только удаленной загрузки небольшого программного обеспечения без прерывания работы сети. Конструктивно сервер может состоять из одной или двух полок, вмещающих до 11 процессорных плат плюс 1 резервную каждая. В максимальной конфигурации сервер обслуживает 22 контроллера базовых станций (BSC) и обеспечивает одновременную обработку до 5280 каналов PDCH (Packet Data channels). В перспективе (при ориентации системы на мобильный Интернет) возможно добавление специального узла - IGSN (Internet GPRS Support Node - узел поддержки Интернет).

За управление и контроль GPRS-системы отвечает OMC-R/G (Operation and Maintenance Center - Radio/GSN - центр управления и обслуживания радио/узла GPRS. Это интерфейс между системой и обслуживающим ее персоналом.

Прежде чем приступить к работе с GPRS, мобильная станция, так же как и в обычном случае передачи голоса, должна зарегистрироваться в системе. Как уже было сказано, регистрацией ("прикреплением" (attachment) к сети) пользователей занимается SGSN. В случае успешного прохождения всех процедур (проверки доступности запрашиваемой услуги и копирования необходимых данных о пользователе из HLR в SGSN) абоненту выдается P-TMSI (Packet Temporary Mobile Subscriber Identity - временный номер мобильного абонента для пакетной передачи данных), аналогичный TMSI, который назначается мобильному телефону для передачи голоса (если абонентский терминал относится к классу А , то ему при регистрации выделяется как TMSI, так и P-TMSI).

Для быстрой маршрутизации информации к мобильному абоненту GPRS-система нуждается в данных о его месторасположении относительно сети, причем с большей точностью, нежели в случае передачи голосового трафика ( HLR и VLR хранят номер Location Area (LA), в которой находится абонент). Но как возрастет служебный трафик в сотовой сети и расход энергии мобильным аппаратом, если телефон будет информировать систему каждый раз при переходе от одной соты к другой! Чтобы найти разумный компромисс между объемом сигнального трафика в сети GPRS и необходимостью знать с высокой точностью местонахождение абонента принято деление терминалов на три класса:

1) IDLE (неработающий). Телефон отключен или находится вне зоны действия сети. Очевидно, что система не отслеживает перемещение подобных абонентов.

2) STANDBY (режим ожидания). Аппарат зарегистрирован (прикреплен) в GPRS-системе, но уже долгое время (определяемое специальным таймером) не работает с передачей данных. Местоположение STANDBY - абонентов известно с точностью до RA (Routing Area - область маршрутизации). RA мельче, чем LA (каждая LA разбивается на несколько RA, но, тем не менее, RA крупнее, чем сота, и состоит из нескольких элементарных ячеек).

3) READY (готовность). Абонентский терминал зарегистрирован в системе и находится в активной работе. Координаты телефонов, находящихся в режиме READY, известны системе (а, точнее, SGSN) с точностью до соты. Согласно этой идеологии, терминалы, находящиеся в STANDBY-режиме, при переходе из одного RA в другой посылают SGSN специальный сигнал о смене области маршрутизации (routing area update request). Если новая и старая RA контролируется одним SGSN, то смена RA приводит лишь к корректировке записи в SGSN. Если же абонент переходит в зону действия нового SGSN, то новый SGSN запрашивает у старого информацию о пользователе, а MSC, VLR, HLR и вовлеченные в работу GGSN ставятся в известность о смене SGSN. Когда телефон, работающий с GPRS-системой, перемещается в другую LA, то SGSN отправляет соответствующему VLR сообщение о необходимости смены записи о местонахождении абонента.

Интересно обстоят дела с маршрутизацией данных в случае роуминга GPRS-абонента. При этом возможны два варианта. SGSN в обоих случаях используется гостевой (VSGSN - Visited SGSN), а вот GGSN может использоваться либо гостевой (VGGSN - Visited GGSN), либо домашний (HGGSN - Home GGSN). В последнем случае между домашним и гостевым операторами должна существовать GPRS-магистраль (InterPLMN GPRS BackBone - GPRS-линия между разными мобильными сетями) для передачи трафика между HGGSN и мобильным абонентом. Кроме того, появляется необходимость в BG (Border Gateway - граничный шлюз) с обеих сторон с целью обеспечения защиты сетей от атак извне.

Страницы: 1, 2, 3, 4


© 2010 САЙТ РЕФЕРАТОВ