бесплано рефераты

Разделы

рефераты   Главная
рефераты   Искусство и культура
рефераты   Кибернетика
рефераты   Метрология
рефераты   Микроэкономика
рефераты   Мировая экономика МЭО
рефераты   РЦБ ценные бумаги
рефераты   САПР
рефераты   ТГП
рефераты   Теория вероятностей
рефераты   ТММ
рефераты   Автомобиль и дорога
рефераты   Компьютерные сети
рефераты   Конституционное право
      зарубежныйх стран
рефераты   Конституционное право
      России
рефераты   Краткое содержание
      произведений
рефераты   Криминалистика и
      криминология
рефераты   Военное дело и
      гражданская оборона
рефераты   География и экономическая
      география
рефераты   Геология гидрология и
      геодезия
рефераты   Спорт и туризм
рефераты   Рефераты Физика
рефераты   Физкультура и спорт
рефераты   Философия
рефераты   Финансы
рефераты   Фотография
рефераты   Музыка
рефераты   Авиация и космонавтика
рефераты   Наука и техника
рефераты   Кулинария
рефераты   Культурология
рефераты   Краеведение и этнография
рефераты   Религия и мифология
рефераты   Медицина
рефераты   Сексология
рефераты   Информатика
      программирование
 
 
 

Радиоприемные устройства

Радиоприемные устройства

Министерство образования Республики Беларусь

Учреждение образования

«Белорусский государственный университет

информатики и радиоэлектроники»

К защите допускаю

“_______” _______________2006 г.

Оценка

“_________” _____________2006 г.

Пояснительная записка

к курсовому проекту:

«РАДИОПРИЁМНОЕ УСТРОЙСТВО»

Разработал:                                                                   Проверил:

студент гр.341201

Курочкин А.Е.                                                          Якуш  Р.А.

Минск

2006


Содержание

Введение……………………………………………………………....…….3

1.         Обоснование требований ТЗ…………………………………..……5

2.         Разработка структурной схемы…………….………....……………6

3.         Предварительный расчёт…………………….…………………......9

4.         Электрический расчёт узлов РПУ……………………………….…6

5.         Моделирование узла временного разделения каналов …....……...5

6.         Конструктивный расчет корпуса РПУ…..………………….…….47

Заключение…………………………………………..……………..….….51

Список использованной литературы……………...…….….....................52

Приложения……….…………………………………………………........53


ВВЕДЕНИЕ

Радиоприемные устройства входят в состав радиотехнических систем связи, т.е. систем  передачи информации с помощью электромагнитных волн

Радиоприемное устройство состоит из приемной антенны, радиоприемника и оконечного устройства предназначенного для воспроизведения сигналов. Радиоприемники можно классифицировать по ряду признаков, из которых основными являются: тип схемы, вид принимаемых сигналов, назначение приемника, диапазон частот, вид активных элементов, используемых в приемнике, тип конструкции приемника.

По типу схем различают приемники детекторные, прямого усиления (без регенерации и с регенерацией), сверхрегенеративные и супергетеродинные приемники, обладающие существенными преимуществами перед приемниками других типов и широко применяемые на всех диапазонах приемников.

Принимаемые сигналы служат для передачи сообщений или измерения положения и параметров относительного движения объектов. Сигналы могут передавать сообщения от одного источника или нескольких. Для передачи информации используется изменение одного из параметров сигнала по закону изменения информационного сигнала. Используются: непрерывные колебания с изменяемой (модулированной) амплитудой, частотой или фазой; колебания, скачкообразно изменяемые (манипулированные) по амплитуде, частоте, или разности фаз; колебания с изменяемой амплитудой, частотой или фазой, которые обусловлены видеоимпульсами с амплитудной, широтной, временной, или дельта-модуляцией, а также кодовыми группами видеоимпульсов.

По назначению различают приемники связные, радиовещательные, телевизионные, радиорелейных и телеметрических линий, радиолокационные, радионавигационные и другие. Связные радиоприемники чаще всего служат для приема одноканальных непрерывных сигналов с АМ (с несущей и боковыми полосами), ОБП (однополосной) и ЧМ или дискретных сигналов с амплитудной манипуляцией, частотной или фазовой. Радиовещательные приемники (монофонические) принимают одноканальные непрерывные сигналы с АМ на длинных, средних и коротких волнах и с ЧМ на ультракоротких волнах. Приемники черно-белых телевизионных программ принимают непрерывные сигналы с АМ и частичным подавлением одной боковой полосы частот и звуковые сигналы с ЧМ. Приемники цветных телевизионных программ принимают также сигналы, создающие цветное изображение. Приемники оконечных станций радиорелейных и телеметрических линий обычно предназначены для приема и разделения каналов многоканальных сигналов с частотным и временным уплотнением.

Приемники промежуточных станций радиорелейных линий (наземных и спутниковых) отличаются от приемников оконечных станций тем, что в них не происходит разделения многоканальных сигналов.

Импульсные радиолокационные приемо-передающие станции обычно излучают зондирующие радиоимпульсы с фиксированными периодами следования, длительностью импульсов, амплитудой и несущей частотой. Приемники таких станций служат для приема части энергии зондирующих сигналов, отраженной от целей. Отраженные сигналы могут быть импульсными или непрерывными, причем информация о целях может содержаться в изменении во времени амплитуды (или отношения амплитуд) и частоты (или спектре) сигналов.

Согласно рекомендации МККР (Международного консультативного комитета по радио) спектр радиосвязи делится на диапазоны. Наиболее широко распространенные приемники работают в диапазоне 30 кГц - 300 ГГц (на волнах 10 км - 1мм).

В качестве активных элементов каскадов приемников, работающих на частотах 30 кГц - 300 МГц, используются полупроводниковые приборы и электронные лампы. Предпочтение отдается полупроводниковым приборам благодаря их преимуществам (малые габаритные размеры и масса; низкие напряжения и токи питания; большой срок службы и механическая прочность).

Приемники конструктивно выполняются из отдельных (навесных) активных и пассивных элементов с печатным или объемным монтажом или из готовых интегральных микросхем, представляющих собой каскады, узлы приемников и даже целые приемники.


1. ОБОСНОВАНИЕ ТРЕБОВАНИЙ ТЗ

          Техническим заданием задан следующий тип сигнала L8AJT:

7.   L –  излучение с модуляцией по ширине;

8.   8 – два и более канал  информации;

9.   A – телеграф  для слухового приема;

10.       J –  звук коммерческого качества

11.       T – временное уплотнение

          Другие данные заданные ТЗ:

·           Реальная чувствительность - 100 мкВ;

·           Избирательность по соседнему каналу - 50 дБ;

·           Избирательность по зеркальному каналу - 90 дБ;

·           Коэффициент регулирования АРУ - 85 дБ.

         

После того, как определен тип модуляции сигнала, следует выбрать диапазон принимаемых частот и рассчитать полосу сигнала. Современные приёмники с ШИМ сигналов работают в диапазонах КВ и УКВ. Поскольку данный приемник является стационарным устройством, выбираем из рекомендованных МККР диапазонов для стационарного КВ приёмника диапазон (4.438 – 4.650) МГц. Данный диапазон обеспечивает дальность приёма днём до 600 км, ночью – до 3000 км. Следует отметить, что дальность практически не зависит от солнечной активности.


2. РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ

Структурные схемы приемников различаются построением тракта радиочастоты, в котором может осуществляться прямое усиление входных сигналов и усиление их с преобразованием частоты.

В приемниках прямого усиления тракт радиочастоты содержит входную цепь (ВЦ) и усилитель поступающего с антенны радиосигнала – так называемый усилитель радиосигнала (УРС). В этом случае все избирательные цепи настроены на частоту принимаемого радиосигнала, на которой  осуществляется усиление. Входная цепь обеспечивает предварительную частотную селекцию до первого каскада УРС, а сам УРС – основную частотную селекцию и детекторное усиление сигналов. Так как обычно необходимы высокая избирательность и усиление, то может потребоваться несколько усилительных каскадов и резонансных контуров. Из-за конструктивной сложности реализации перестройки число контуров редко превышает 3...4. При этом усиление на радиочастоте может оказаться неустойчивым, а селективность недостаточной.

Наибольшее распространение для подавляющего большинства радиосистем различного назначения получила супергетеродинная структура приемника с одно- или многократным преобразованием частоты (Рисунок 1). Часть приемника – преселектор, включающий ВЦ и УРС, подобен структуре  приемника прямого усиления и обеспечивает чувствительность и предварительную селекцию по частоте. С выхода преселектора напряжение сигналов и помех поступает на преобразователь частоты (ПЧ), где происходит изменение несущей частоты сигнала


Рисунок 1. Структурная схема приемника супергетеродинного типа

Для этого сигнал и колебания местного генератора - гетеродина (Г) одновременно воздействуют на смеситель (См), представляющий собой нелинейный или параметрический элемент.

В результате на выходе смесителя возникает колебание, содержащие составляющие с частотой сигнала  и его гармоник, гетеродина  и его гармоник и большое число комбинационных составляющих с частотами   (n,m=0,1,2...- целые числа). Одна из этих комбинационных частот   используется в качестве новой несущей частоты выходного сигнала и называется промежуточной частотой:

          (3.1)

Поскольку сигнал несет в себе полезную информацию, в процессе преобразования частоты эта информация должна сохраняться, то есть ПЧ должен быть линейным. Таким образом, в процессе преобразования частоты происходит перенос спектра сигнала в область промежуточной частоты без нарушения амплитудных и фазовых соотношений его составляющих. Частотно-избирательные блоки, расположенные за смесителем, настроены на частоту    и называются усилителями сигналов промежуточной частоты (УПЧ). Промежуточная частота  всегда фиксирована, не зависит от частоты принимаемого сигнала  и выбирается намного ниже частоты сигнала. Поэтому на частоте  легко обеспечить требуемое устойчивое усиление. Так как УПЧ не перестраивается по частоте, то это позволяет получить в супергетеродинном приемнике высокую частотную избирательность при неизменной полосе пропускания, а также реализовать оптимальную фильтрацию сигнала от помех, применяя согласованные фильтры на промежуточной частоте.

Приемник многоканальных сигналов с временным уплотнением должен преобразовывать радиоимпульсы в видеоимпульсы; разделить видеоимпульсы, служащие для передачи сообщений по различным каналам, и преобразовать видеоимпульсы, следующие с тактовой частотой, в модулирующее напряжение. После линейного тракта радиоимпульсы промежуточной частоты поступают на входе  демодулятора (ДРИ), который в свою очередь преобразует их в видеоимпульсы. Т.е. Uпор ≥Uп  При приеме сигналов с ШИМ в качестве ДРИ может выступать амплитудный детектор. Радиоимпульсы синхронизации также преобразуются ДРИ в видеоимпульсы. Они, как правило, отличаются большой длительностью, что позволяет с помощью интегратора (И)  и пороговой схемы (ПС) выделить их. Они поступают на ждущий мультивибратор (МВ), который при этом запускается и открывает каскад совпадения (КС), который пропускает соответствующий канал на время приема импульса. Срез импульса МВ1 запускает МВ2, который открывает следующий канал и т.д. Затем приходит следующий синхроимпульс и все повторяется. Для демодуляции сигналов с широтно-импульсной модуляцией (ШИМ) необходимо пропустить видеоимпульсы через ФНЧ с граничной частотой Fв, где 0.5Fи>Fв>Fmax. Для ослабления помех нужно использовать двухсторонний ограничитель (ДО) или электронное реле, которое будет перебрасываться во время прохождения напряжения через некоторое пороговое напряжение. Уровень ограничения следует выбрать из условия Uпор ≈ 0.5Uи, где Uи – амплитуда видеоимпульсов. В этом случаи уровень ограничения попадает на участок наибольшей крутизны фронта импульсов, и действие помех станет минимальным. ДО необходимо включить между КС и ДРИ, тем самым уменьшая необходимое число активных элементов. В итоге структурная схема приемника будет выглядеть как показано на рисунке 2.

Рисунок 2. Структурная схема многоканального приемника с ШИМ и временным уплотнением.

При расчёте структурной схемы необходимо определить число преобразователей частоты, определить промежуточные частоты и частоты гетеродинов, к-ты передачи блоков УРС, ПЧ и УПЧ, чтобы обеспечить на выходе тюнера достаточный уровень сигнала для работы усилителя.


3. ПРЕДВАРИТЕЛЬНЫЙ РАСЧЁТ

3.1. Расчёт полосы пропускания

Расчёт полосы пропускания приёмника сигналов ШИМ можно вести как для обычного приёмника непрерывных сигналов с АМ, так как ширина спектра определяется верхней частотой информационного сообщения.

Исходные данные:

Fq = 200 – 3000 Гц – ширина спектра информационного сообщения

f0 = 4.565 Мгц – частота несущей принимаемого сигнала

Расчёт числа преобразователей частоты:

Необходимо  проверить выполнение условия:

                     (4.1.1)

где:

fc  –  частота несущей принимаемого сигнала – fc = f0 = 4.5 МГц

Sзк –  требуемая избирательность по зеркальному каналу, число раз 90дБ = 31622раз.

Q       –  конструктивная добротность избирательных систем. Для LC контуров принимаем Q=100.

∆F  – ширина спектра информационного сообщения.

∆F  = 2Fmax  =6000      (4.1.2)

n – число избирательных систем.

Покажем, что условие (4.1.1) выполняется для n =3 :

    (4.1.3)

Действительно 360.9кГц меньше 600кГц. Теперь, зная ширину спектра сигнала, можно определить промежуточную частоту (ПЧ). Причем мы не должны забывать об некоторых условиях, которые накладываются на ПЧ:

1)   ПЧ не должна находиться в диапазоне частот приемника или близко от границ этого диапазона;

2)   ПЧ не должна совпадать с частотой какого либо мощного передатчика;

Существует ряд стандартных значений ПЧ, причем нужно из этого ряда выбрать такую, которая будет попадать в диапазон между 360.9кГц и 600кГц

    (4.1.4)

В этот диапазон как раз попадает стандартное значение fпч = 465 кГц. Зная fпч, можно определить частоту гетеродина. Поскольку условие (4.1.1) выполнилось, то одного преобразования частоты будет достаточно. Следовательно, в схеме будет только один гетеродин и один преобразователь частоты. В качестве гетеродина используем цифровой синтезатор частоты со встроенной петлёй ЧАП. Это обеспечит высокую стабильность частоты (нестабильность частоты составит не более 10) и облегчит перестройку гетеродина.

Поскольку значение ПЧ меньше минимальной частоты диапазона, преобразование будет нижним, и частота гетеродина определится как:

          (4.1.5)

Подставляя значения в формулу (4.1.5), получим:

 4.565Мгц – 0.465MГц = 4.1MГц      (4.1.6)

Разработка структурной схемы закончена. Далее следует определить требуемое усиление, рассчитать полосу принимаемого сигнала.

Ниже приведены результаты разработки структурной схемы:

·           Диапазон принимаемых частот -  (4.438 – 4.650) МГц

·           Промежуточная частота Fпч = 465кГц

·           Частота гетеродина  – 4.1МГц

·           Число избирательных систем приселектора – n = 2

3.2. Определение ширины полосы пропускания ВЧ тракта

Полоса пропускания высокочастотного тракта с системой ЧАП определяется формулой:

   (4.2.1)

где:

 - ширина спектра принимаемого сигнала, Dfсп=6 кГц,

dс ,dг  - относительная нестабильность несущей частоты сигнала dс=0 и частоты гетеродина,dг=10-6 (цифровой синтезатор с кварцевой стабилизацией)

dпр=10-3, относительная нестабильность собственной частоты контуров тракта ПЧ приемника,

dн=10-3, относительная погрешность установки при беспоисковой настройке,

Fд мах=0, доплеровский сдвиг частоты (приемник является стационарным устройством и доплеровский сдвиг не образуется).

Fпч= 465 кГц, промежуточная частота. 

КЧАП – коэффициент подстройки системы ЧАП, КЧАП=15,

Необходимую полосу пропускания приемника находим, подставляя значения в формулу (4.2.1):

(4.2.2)

 = 7.2 кГц        (4.2.3)

Для расчётов также необходима эффективная шумовая полоса системы, рассчитываемая как

       (4.2.4)

Где 1.1 – коэффициент расширения. Получим значение :

           (4.2.5)

3.3.Выбор числа усилительных каскадов

Определим требования к коэффициенту шума первого усилительного каскада преселектора, остальными мы пренебрегаем виду малого оказываемого ими влияния.

             (4.2.5)

=16.96

где - входное отношение сигнал помеха, необходимое для нормальной работы схемы

Еа – минимальное напряжение полезного сигнала в антенне

К=1.38·10-23 Дж/град – постоянная Больцмана;

Пш»1.1·П=8кГц – шумовая полоса линейного тракта;

Т0=293 К – стандартная температура приемника;

RA»50 Om – сопротивление антенны;

EП=1мкВ/м – средний уровень помех днем;

 - действующая высота антенны, где  длина волны сигнала

Так как уровень помех превысил значение мин. значение сигнала в антенне, в схеме приемника необходим транзисторный УРС. Для облегчения производства и производственной унификации все блоки приёмника будем строить на транзисторах одной серии. Это позволит применять в усилительных каскадах однотипные схемы смещения, а также обеспечит согласование каскадов по шумам.

          Выберем по справочной литературе малошумящий биполярный pnp – транзистор КТ 375Б, отечественного производства, обладающий следующими характеристиками:


Параметр Значение
Макс.мощность на коллекторе Pk, Вт 0.3
Uкбо, В 30
Uкэо, В 30
Uэбо, В 5
С11, пФ 120
С22, пФ 20
g11, mСм 10
g22, mСм 0.02
h21э 50 – 280
Кш на 10^5 кГц, дБ не более 5
Iб, мкА 50
ft, МГц 250

Требуемое усиление линейного тракта находим как

                                       (4.2.6)

          (4.2.7)

где Uупч=1В, напряжение на выходе последнего каскада УПЧ, необходимое для нормальной работы детектора;

Е=100мкВ/м – заданная по ТЗ чувствительность;

 - действующая высота антенны, где  длина волны сигнала

          Таким образом, получаем, что требуемое усиление линейного тракта равно 434 раз или 52 дБ

Поскольку коэффициент усиления каскада, с точки зрения устойчивой работы, не может быть больше устойчивого коэффициента усиления, то коэффициент усиления каскада примем равным устойчивому коэффициенту усиления на максимальной рабочей частоте.

Коэффициент усиления биполярного транзистора в заданной рабочей точке можно рассчитать по формуле

(4.2.8)

                  

где S – крутизна ВАХ в рабочей точке, мА/В;

f – максимальная рабочая частота, МГц;

Ск – емкость перехода коллектор-база, пФ.

Основное усиление в РПУ осуществляется в тракте ПЧ, так как его каскады являются неперестраиваемыми. На практике к-т усиления УРС не превышает 25 дБ по напряжению из соображений линейности обработки и устойчивости каскада к самовозбуждению.

Рассмотрим сформированную ранее структурную схему и зададимся требуемыми величинами усиления в каскадах на  рисунке 3.

Рисунок 3 Требуемыми величинами усиления в каскадах.

С антенны на входе РПУ наводится напряжение в 100мкВ (минимум), а на входе детектора для нормальной его работы требуется иметь напряжение в 1В – необходимый уровень напряжения для логики, которая находится далее.

Ограничим к-т усиления УРЧ в 20дБ и при идеальной входной цепи получим на входе смесителя 10мВ. Поскольку смеситель работает в режиме сильного сигнала гетеродина, на выходе уровень сигнала определяется уровнем последнего. Таким образом, получим на входе УПЧ около 10мВ, а с выхода требуется снять 1В. Тогда к-т усиления УПЧ составит 100 или 40 дБ. Поскольку из соображений линейности и устойчивости с одного каскада снимать более 20дБ недопустимо, составим УПЧ из двух каскадов. Как будет показано ниже, один из них будет нагружен на ФСС, а другой будут апериодическим. АРУ будет регулировать все два каскада УПЧ.

Общее усиление до детектора составит

                   (4.2.9)

        (4.2.10)

где Квц=0.5= -6дБ – коэффициент передачи входной цепи;

nурч=1, nупч=2 – количество каскадов в УРЧ и УПЧ соответственно, для начала зададимся приведенными цифрами.

Поскольку К0min<Kобщ, то расчет произведен верно и принимается схема с одним каскадом УРЧ и двумя для УПЧ.

Коэффициент усиления выбран с запасом по следующим причинам:

·           Уменьшение коэффициента усиления в результате старения элементов;

·           В предварительном расчете не учитывались затухания вносимые избирательными системами, стоящими в тракте ПЧ;

·           Необходимость учесть расстройку контуров.

Итак, теперь у нас есть все необходимые данные для подробного расчёта узлов приёмника. Сведём их в таблицу.

Параметр Значение
Диапазон принимаемых частот, МГц 4.438 – 4.650
Частота гетеродина, МГц 4.1
К-т шума 16.96
Общее усиление тракта, дБ 74
Напр-е на входе, мкВ не менее 100
Промежуточная частота, кГц 465

4. ЭЛЕКТРИЧЕСКИЙ РАСЧЁТ УЗЛОВ РПУ

4.1 Расчет параметров входной цепи.

Определяем максимально допустимую добротность контуров, обеспечивающую заданное ослабление на краях полосы пропускания

                              (5.1.1)

                              

         

где     f’min- минимальная частота диапазона, кГц;

П – ширина полосы пропускания, кГц;

nc – число одиночных избирательных систем настроенных на частоту принимаемого сигнала, возьмем nc=2;

          sП – ослабление на краях полосы пропускания, sП=2 (6дБ).

          Необходимая добротность Qи, обеспечивающая заданную избирательность по зеркальному каналу

          (5.1.2)

        

           где   fзмах=f’max-2fпр– максимальная частота зеркального канала;

          f’max – максимальная частота поддиапазона

          fпр – промежуточная частота

          Sзк – избирательность по зеркальному каналу, Sзк=50 дБ = 316;

          Возможная эквивалентная конструктивная добротность контура (с учетом шунтирования контура транзистором y=0.8)

                       (5.1.3)

= 0.8*150=120                  

где     Qk – конструктивная добротность контура, Qk=150.

          Проверяем выполнение условия:

                  

Из полученных ранее значений видно, что оно выполняется, в этом случае примем эквивалентную добротность контура немного больше Qu. Принимаем число контуров nc=2 (одноконтурная входная цепь и резонансный УРЧ), и эквивалентное качество контура Qэмах=65 (на максимальной частоте поддиапазона), при этом обеспечивается требуемое ослабление на краях полосы пропускания и избирательность по ЗК лучше заданной.

Находим эквивалентную добротность контура на нижней частоте поддиапазона.

               (5.1.4)

    

Видно, что Qэmin=83.48<QП=338, значит расчет произведен верно и окончательно принимаем: nc=2; Qэmax=65; Qэmin=83.48.

Теперь определим параметры, необходимые для расчета избирательности во входной цепи.

Для крайних точек поддиапазона f’min, f’max определяем:

a)         вспомогательные коэффициенты:

          (5.1.5)

где Δfс – растройка, прн которой задана избирательность по соседнему каналу, Δfс=300кГц.

          (5.1.6)

                  (5.1.7)

                (5.1.8)

б) зеркальные частоты

(5.1.9)

(5.1.10)

в) избирательность по соседнему каналу

          на максимальной частоте


                                       (5.1.11)

на минимальной частоте

          (5.1.12)

г) ослабление на краях полосы

                                                 (5.1.13)

         

                                                (5.1.14)

д) избирательность по зеркальному каналу

(5.1.15)

                   (5.1.16)

Полученное значение избирательности превышает требуемое, что свидетельствует о верном расчете. Переходим к расчёту параметров антенны и связи её с каскадом УРС.

4.2. Расчет УРЧ

Расчет УРЧ начинаем с расчета режима работы транзистора. В таком же режиме будет работать транзистор в преобразователе частоты, а транзисторы в каскадах УПЧ рассчитываются по аналогичной методике.

В качестве усилительного элемента используем транзистор КТ375Б со следующими характеристиками :


Параметр Значение
Макс.мощность на коллекторе Pk, Вт 0.3
Uкбо, В 30
Uкэо, В 30
Uэбо, В 5
С11, пФ 120
С22, пФ 20
g11, mСм 10
g22, mСм 0.02
h21э 50 – 280
Кш на 10^5 кГц, дБ не более 5
Iб, мкА 50
ft, МГц 250

Первым делом определяем для диапазона температур (-40…+60)С величину теплового тока:

                                (5.2.1)

Рассчитываем температурную нестабильность напряжения эмиттер-база, задавшись = 1.8:

                               (5.2.2)

Рассчитываем температурную нестабильность тока коллектора, задавшись током коллектора для обеспечения необходимого усиления в 10 mА.

                                   (5.2.3)

Питание будем подавать смещением базы через делитель в схеме с эмиттерной термокомпенсацией. Рассчитаем номиналы резисторов смещения.

                                   (5.2.4)

 

Рассчитаем сопротивление фильтра:

                                               (5.2.5)

Сопротивление фильтра вышло 60 Ом.

Рассчитаем сопротивления базового делителя, обозначив  Rд1 нижнее плечо (на землю), а Rд2 – верхнее.


(5.2.6)

(5.2.7)

Значение Rд1 выберем 10 кОм для удобства построения схемы.

Емкости эмиттерного конденсатора Сэ и конденсатора фильтра рассчитаем по формулам:


(5.2.8)

(5.2.9)

На этом расчет режима питания каскада закончен. Далее необходимо определить номиналы элементов избирательных систем и определить к-ты связи последних с транзистором.

Индуктивность контурных катушек УРС принимаем равной индуктивности контурной катушки магнитной антенны:

Lкурс = Lka = 5.2 мкГн

В расчете входной цепи был определен коэффициент связи между антенным контуром и УРС   m1=0.8. Определим коэффициент связи с выходным контуром.

Определим коэффициент устойчивого усиления для каскада:

(5.2.10)

Для используемого транзистора КТ375Б  Куст = 25

Резонансный коэффициент передачи УРС рассчитывается по формуле:

 (5.2.11)


Если подсчитать К для m2 =0.3, то окажется, что К> Куст:

К       = 34,24

Куст  = 25

Чтобы избежать возбуждения каскада УРС в режим генерации, следует снизить коэффициент усиления. Применение ООС в данном случае расширит полосу пропускания и ухудшит избирательность УРС. Поэтому ослабим связь с выходным контуром до 0.2.

Получим:  К= 22.8

Куст  = 25

С такой степенью связи каскад будет работать устойчиво.

Определим ёмкости конденсаторов контуров избирательных систем и диапазон перестройки.


(5.2.13)

(5.2.14)

(5.2.15)

Получим следующие значения:

Со     = 236 пФ  Сmax = 247 пФ Сmin = 225 пФ

Перестройку контура в таком диапазоне легко получить, включив в контур два встречновключенных варикапа. За счет встречно-последовательного включения средняя емкость варикапов изменяется значительно меньше, чем при использовании одного варикапа, к тому же обеспечивается компенсация четных гармоник.

Минимальную емкость контура теперь можно определить из формулы:

                            

Где

Сvdmin – минимальная емкость варикапа при нулевом смещении;

Спкmin  - минимальная постоянная емкость контура;

Сm=8 пФ – емкость монтажа;

C1=2 пФ – межвитковая емкость катушки;

Cвхсл=11 пФ – входная емкость следующего каскада;

м=0.8 – коэффициент включения первого усилительного каскада в контур.

При использовании в качестве встречновключенных варикапов полупроводниковой матрицы из пары согласованных варикапов при нулевом смещении их рабочая точка стабилизируется и матрица способна обеспечить стабильное ненулевое значение емкости. Основной вклад в емкость контура вносит постоянный конденсатор Спк, включенный параллельно матрице.

Выберем из справочной литературы (9) варикапную матрицу 2В110А с параметрами:

Св, пФ Кс Iобр, мкА Pмакс,   мВт Uобр макс, В T,С
12-18 2.5 1 100 45 300 -60…+125

Зная Скmin и Скmax, рассчитанные по формулам (5.30) и (5.31), определим номинал постоянного конденсатора Спк, используя формулу (5.32). Возьмем за начальную емкость варикапной матрицы среднее значение в 15 пФ:

225 = Спкmin + 15 +8+2+8.8

247 = Cпкmax +15*2.5 +8+2+8.8

Cпк = M(Cпкmin, Cпкmax) = 190 пФ

где Кс=2.5 – коэффициент перестройки по частоте варикапной матрицы.

Аналогичная система перестройки  может быть поставлена и во входной контур антенны.

Теперь необходимо заменить в схеме катушку связи и контурную катушку УРС на общий блок. Новая катушка будет иметь индуктивность:

(5.2.16)

L’ = 0.5 мкГн

На этом расчет входной цепи и УРС закончен. Принципиальная схема блока представлена на рисунке 4.

Рисунок 4 Принципиальная схема УРС.

Индуктивность в цепи смещения варикапов номиналом в 100мкГн служит для развязки цепи смещения от переменной составляющей контурного тока и устранения паразитной обратной связи со смесителем через синтезатор частоты. Поскольку обратный ток согласованной матрицы чрезвычайно мал (менее 1мкА), шунтированием контуров магнитной антенны через цепь смещения можно пренебречь.

4.3. Расчет преобразователя частоты

Назначение смесителя частоты – линейный перенос спектра сигнала на промежуточную частоту при помощи опорной частоты местного генератора – гетеродина. в качестве последнего в схеме применен цифровой синтезатор частот с микропроцессорным управлением и встроенной петлей ЧАП. Подобное схемное решение позволяет (3):

1)         Использовать один гетеродин для всех диапазонов приемника;

2)         Осуществлять синхронную цифровую перестройку как контуров (управляя через АЦП смещением контурных варикапов), так и гетеродина, что минимизирует нестабильность fпч.

3)         Благодаря наличию встроенной цифровой ЧАП осуществлять постоянную высокоточную подстройку гетеродина;

В рамках данного проекта расчет блока синтезатора частоты и его выбор не проводился и в дальнейшем на схеме он изображаться не будет. Необходимые для расчетов данные уже были использованы при расчете полосы сигнала в предварительном расчете.

Преобразователь строим на транзисторном каскаде с общим эмиттером по сигналу с подачей сигнала гетеродина в эмиттерную цепь. Данная схема включения позволяет транзистору работать в режиме общей базы относительно сигнала гетеродина, что обеспечит меньшую взаимную связь между цепями гетеродина и сигнала, а также высокую стабильность частоты. Нагрузкой преобразователя является ПКФ. Согласование транзистора смесителя с ПКФ осуществляется через широкополосный контур.

Зададимся требованиями к преобразователю исходя из его положения в схеме.

кт=3 – требуемое усиление в преобразователе;

Sпр=55мА/В – крутизна ВАХ транзистора VT1;

Rвыхпр=30кОм – выходное сопротивление транзистора;

sвн=3.16  – затухание, вносимое фильтром.

Определим коэффициент шунтирования контура выходным сопротивлением транзистора и входным сопротивлением  фильтра, допустимый из условия обеспечения требуемого коэффициента усиления:

         

                                                          (5.3.1)

Далее определяем конструктивное и эквивалентное затухание широкополосного контура


                                                (5.3.2)

         

где Qэ=28 – добротность широкополосного контура, Qэш=28


                                                          (5.3.2)

          Определяем характеристическое сопротивление контура, принимая коэффициент включения в цепи коллектора m1=1


                                                          (5.3.3)

Определяем коэффициент включения в контур со стороны фильтра


                                                          (5.3.4)

Rвхф=330 Ом – входное сопротивление ПКФ.

Рассчитываем эквивалентную емкость схемы:


(5.3.5)

Определяем номинал контурного конденсатора, приняв Свыхпр=15пФ – выходная емкость транзистора преобразователя частоты.


(5.3.6)

Принимаем С2=6пФ.

Определяем действительную          эквивалентную емкость схемы


(5.3.7)

Рассчитываем индуктивность контурной катушки:


         

(5.3.8)

Теперь можно рассчитать действительное характеристическое сопротивление контура:


(5.3.9)

Рассчитаем резонансный коэффициент усиления транзисторного преобразователя :


(5.3.10)

         

Поскольку расчет ведется с запасом, данное значение коэффициента усиления является допустимым. Остаток обеспечит УПЧ.

Рассчитаем индуктивность катушки связи с фильтром, задавшись коэффициентом связи Ксв=0.4

           

                                                                                        (5.3.11)

Рассчитываем элементы, определяющие режим работы транзистора.

Рабочую точку преобразователя выбираем аналогично УРС:

Rэ = 470 Ом        Rg1 = 25 кОм                Rф = 60 Ом

Сэ = 25 нФ Rg2 = 10 кОм                Сф = 29 нФ

         

Определим входное сопротивление

                                                                            

(5.3.12)

Разделительная емкость С1  входит в блок УРЧ и её номинал  принимаем в 10 мкФ, чего более чем достаточно для пропускания частоты в единицы MГ. Принципиальная схема преобразователя представлена на рисунке 5.


Страницы: 1, 2


© 2010 САЙТ РЕФЕРАТОВ