бесплано рефераты

Разделы

рефераты   Главная
рефераты   Искусство и культура
рефераты   Кибернетика
рефераты   Метрология
рефераты   Микроэкономика
рефераты   Мировая экономика МЭО
рефераты   РЦБ ценные бумаги
рефераты   САПР
рефераты   ТГП
рефераты   Теория вероятностей
рефераты   ТММ
рефераты   Автомобиль и дорога
рефераты   Компьютерные сети
рефераты   Конституционное право
      зарубежныйх стран
рефераты   Конституционное право
      России
рефераты   Краткое содержание
      произведений
рефераты   Криминалистика и
      криминология
рефераты   Военное дело и
      гражданская оборона
рефераты   География и экономическая
      география
рефераты   Геология гидрология и
      геодезия
рефераты   Спорт и туризм
рефераты   Рефераты Физика
рефераты   Физкультура и спорт
рефераты   Философия
рефераты   Финансы
рефераты   Фотография
рефераты   Музыка
рефераты   Авиация и космонавтика
рефераты   Наука и техника
рефераты   Кулинария
рефераты   Культурология
рефераты   Краеведение и этнография
рефераты   Религия и мифология
рефераты   Медицина
рефераты   Сексология
рефераты   Информатика
      программирование
 
 
 

Радиоприемные устройства

Рисунок 5. Принципиальная схема преобразователя частоты.

Разделительная емкость С1 входит в блок УРС и продублирована для указания на связь между каскадами УРС и ПЧ через нее. В данной схеме резисторы Rф и Rg1 могут быть объединены в резистор в 25060 Ом, но, поскольку такие резисторы промышленно не выпускаются, в схеме необходимо оставить два отдельных резистора. Для минимизации паразитных внешних наводок на каскад, работающий в режиме малого сигнала и попадания их в цепь гетеродина блок преобразователя частоты помещен в экранирующую оболочку. Оболочка соединена с общим проводом через фильтрующий конденсатор, емкость которого подбирается опытным путем.

4.4. Расчет усилителя промежуточной частоты

Усилитель промежуточной частоты (УПЧ) обеспечивает в схеме основное усиление и обладает избирательностью по соседнему каналу. Поскольку в супергетеродинном приемнике промежуточная частота не изменяется, избирательные системы УПЧ конструируются неперестраиваемыми и могут быть собраны на высокодобротных элементах, например, кварцевых фильтрах. Каскады УПЧ охватываются АРУ с целью выравнивания уровня сигнала на выходе приемника.

Техническим заданием задана избирательность по соседнему каналу в 90дБ. Из соображений устойчивости нерационально делать число каскадов вУПЧ более четырёх, а при применяя схему УПЧ с распределенной избирательностью достичь данной избирательности  и построить устойчивый и конструктивно простой усилитель не удастся (3).

Применим схему с ФСИ. Схема ФСИ, как правило, не содержит более 4-х контуров, так как фильтр начинает вносить существенное затухание.Для начала попробуем построить ФСИ на дискретных контурах и покажем, что для 3-хкаскадного УПЧ она необходимую избирательность при конструктивной простоте фильтра не обеспечит.

По литературе (1) определяем из семейства резонансных кривых вспомогательные коэффициенты h* и c

h*= cfпчd/П,                                              (5.4.1)

где:

fпч – промежуточная частота приемника, fпч=465 кГц

          d – собственное затухание  контура, d=0.004

          П – ширина спектра сигнала

h*=0.37

Намеренно возьмем число контуров ФСИ более 4-х: n=6. Такой фильтр уже конструктивно сложен и невыгоден и использоваться не может. По справочной литературе определим по графику ослабление фильтра Sl1 при расстройке на соседний канал (при применении амплитудной модуляции она составляет 10кГц). Для этого рассчитаем параметр :


(5.4.2)

Также понадобится параметр у1 – относительная расстройка ФСИ.


(5.4.3)

y1 = 2*10/12 = 1.67

 = 0.37*0.85 = 0.31

Из графика пособия определяем, что Sl1 составит 3дБ.

Ослабление, вносимое одним звеном фильтра, рассчитывается по формуле:


(5.4.4)

Подставив n=6, получим ослабление в 0.5 дБ.

По графику 6.4 , зная * и Slп1, определяем параметр  :

0.85

Рассчитаем разность частот среза:

 

(5.4.5)

fср=10/0.85 = 12 кГц

Повторяем расчет по формулам с рассчитанными значениями и получаем ослабление соседнего канала, получаемое на одном звене фильтра:

Slск1 = 8 дБ

Следует задаться ухудшением избирательности из-за рассогласования фильтра с источником сигнала и нагрузкой . Обычно

(5.4.6)

рассогласование составляет 3-6 дБ. Общее ослабление соседнего канала рассчитываем по формуле:


где Sl – вышеупомянутое рассогласование контуров. Примем его в 3дБ. Для 6-извенного фильтра получим общее ослабление всего в:

Это составляет лишь половину требуемой избирательности. И это – при 6-извенном фильтре, конструктивная реализация которого и так невыгодна и сложна. Следовательно, необходим иной подход.

Промышленностью давно освоен выпуск высокодобротных кварцевых полосовых фильтров в интегральном исполнении (3). Их легко согласовать с усилительными элементами и друг с другом, они обеспечивают невысокое затухание на краях диапазона и одновременно высокую избирательность. Осталось подобрать фильтр с необходимыми характеристиками.

Требованиям ТЗ удовлетворяет кварцевый фильтр ПФ1П-4-3 (1)

Ср.частота полосы пропускания

Ширина полосы пропускания

по –6дБ

Ослабление при расстройке 10кГц Вносимое затухание в полосе Входной импеданс Выходной импеданс
465 кГц 7-10кГц >34 дБ <12дБ 2кОм 1кОм

Заданного ослабления можно достичь, если применить цепочку из четырех кварцевых фильтров в виде согласованной матрицы 4ПФ1П-4-3. Подобный подход позволит избежать необходимости согласовывать звенья через трансформаторы, что ухудшит параметры ФСИ. Покажем, что заданная избирательность обеспечивается.

Примем ослабление контуров в 34дБ и затухание в 10дБ. Фильтры с такими параметрами несложно отобрать из поступившей на сборочное предприятие партии. Кроме того, при изготовлении ФСИ из


более современных звеньев (2,3), обеспечивающих ослабление в 50дБ, можно получить и большие цифры.


(5.4.7)

(5.4.8)

Полученная цифра превышает требуемую в ТЗ, остановимся на достигнутом результате. Запас по избирательности позволит в случае необходимости скомпенсировать погрешности согласования ФСИ с усилительными каскадами.

Блок ФСИ необходимо включать в цепь с ослаблением связи. Определим показатель связи фильтра с усилителем. Фильтр будет использоваться в качестве нагрузки 1-го каскада УПЧ, остальные каскады будут апериодическими. Частотная характеристика УПЧ будет определяться первым каскадом, он же будет обеспечивать максимальное усиление.

Показатель связи ФСИ с усилителем рассчитывается по формуле:


(5.4.9)

где коэффициент рассчитывается по формуле:


(5.4.10)

Подставляя значения  , получим = 1.29.  Асв = 1.7

Индуктивность контурной катушки в согласующем контуре первого каскада рассчитывается по формуле:


Получим  Lk = 980 мкГн

(5.4.11)

Теперь рассчитаем индуктивности катушек связи L2 и Ld:

Wб – выходной импеданс ФСИ, 1кОм

коэффициент связи к2 принимаем равным 0.8

L2 = 1.6      мГн

Lb = 102     мкГн

Рассчитаем коэффициент включения:


(5.4.11)

Wk – входной импеданс ФСИ, 2кОм

Получим m1 = 0.16

Рассчитаем индуктивность катушки связи ФСИ с контуром:

L1 = 39.2 мкГн

Теперь рассчитаем номинал контурного конденсатора:


(5.4.12)

С22 – выходная емкость каскада, 15пФ

Сm – монтажная емкость, 20пФ

Получим Ск = 100 пФ

Рассчитаем резонансный коэффициент усиления каскада по напряжению:

(5.4.13)

Подставив, все значения, получим Коф = 60.

Рассчитаем режим питания транзистора. Расчет режима питания всех каскадов аналогичен расчету их в блоке УРС.

Зададимся режимом рабочей точки транзистора:

Ik       = 2mA

Uкэ    = 4.5В

Еп     = 9 В

gk      = 0.44 mСм

 Определяем для диапазона температур (-40…+60)С величину теплового тока:


(5.4.14)

Рассчитываем температурную нестабильность напряжения эмиттер-база по формуле (5.18), задавшись     = 1.8:


(5.4.14)

Рассчитываем температурную нестабильность тока коллектора:

(5.4.15)

Питание будем подавать аналогично каскаду УРС смещением базы через делитель в схеме с эмиттерной термокомпенсацией. Рассчитаем номиналы резисторов смещения


(5.4.16)

Возьмём типовое значение в 1 кОм

Рассчитаем сопротивление фильтра по:

(5.4.17)

Рассчитаем сопротивления базового делителя по формулам, обозначив  Rд1 нижнее плечо (на землю), а Rд2 – верхнее.


(5.4.18)

(5.4.19)

Емкости эмиттерного конденсатора Сэ и конденсатора фильтра рассчитаем по формулам (5.23) и (5.24):

(5.4.20)

(5.4.21)

На этом расчет режима питания каскада закончен.

Коэффициент усиления апериодического каскада рассчитывается по формуле:


(5.4.21)

Получаем значение:   Ко = 10.

Принципиальная схема блока УПЧ представлена на рисунке 6.

Рисунок 6. Принципиальная схема УПЧ

5.5. Расчет амплитудного детектора и системы АРУ

В схеме используется транзисторный амплитудный детектор, одновременно являющийся детектором системы АРУ. Принимаем схему АРУ, с регулировкой усиления  путем изменения тока эмиттера.

Принимаем степень изменения коэффициента усиления одного регулируемого каскада в  K=10 раз.

          Требуемое изменение коэффициента усиления приемника под действием АРУ  задано в ТЗ Кару = 85 дБ

          Необходимое число регулируемых каскадов рассчитывается по формуле:

                                                                                      

(5.5.1)

Количество регулируемых каскадов принимаем равным 2.

Задаемся максимальной величиной тока коллектора регулируемых каскадов

                                                                                                 (5.5.2)

и величиной регулирования

                  

(5.5.3)

          Теперь определим  диапазон изменения коэффициента усиления регулируемых каскадов УПЧ:


(5.5.4)

при q=1      получим     Крегmax = 89.5 дБ ;

при q=0.1   получим     Крегmin = 29.5 дБ ;

Определяем пределы регулировки АРУ:

                                      

(5.5.5)

арег = 89.5 – 29.5 = 60 дБ

В качестве детектора системы АРУ будем использовать транзисторный амплитудный детектор, расчет которого приведен ниже. Этот же детектор будет осуществлять детектирование принимаемого сигнала. Определим крутизну детектирования


(5.5.6)

         

Выбираем сопротивление нагрузки детектора из условия:


В качестве УПТ в схеме АРУ используем операционный усилитель.Поскольку его входное сопротивление достаточно большая величина ( порядка 100кОм ), то согласно формуле, Rк должен иметь сопротивление порядка 500 кОм. При этом коэффициент передачи будет иметь огромную величину, что с точки зрения обеспечения устойчивости усилителя недопустимо. Поэтому для предотвращения самовозбуждения амплитудного детектора, следует шунтировать выход амплитудного детектора сопротивлением R7=Rвхн=300 Ом.


                   (5.5.7)

Rэ = 300 Ом.

Определяем коэффициент передачи детектора:

                                                                             (5.5.8)

kd = 11.2

Входное сопротивление амплитудного детектора рассчитывается по формуле:


(5.5.9)

где а=4, b=0.25 – вспомогательные коэффициенты.

Подставив все значения, получим Rвх = 1.5 кОм

Определим сопротивление делителя R5  (на рисунке – Rg2) задавшись R4 =1кОм и Uб0=0.4 В (на рисунке R4 обозначен Rg1)

при Ek = 9 В:

(5.5.10)

Получим значение 21.5 кОм. Принимаем R5 равным 22 кОм.

Находим емкость С3:

                                                С3 = 0.1 мкФ

Теперь рассчитаем необходимый коэффициент усиления ОУ


(5.5.11)

Получим k= 1.6 . Так как к >1, то будем применять усиленную АРУ. В качестве УПТ примем ОУ  К104УД1.

          Для обеспечения задержки работы АРУ выбираем конденсатор из условия:


                                                                   (5.5.12)

где t = 0.1 сек – постоянная времени цепи АРУ.

Выбираем С2=6.25 мкФ.

Сопротивления R1, R2 выбираем из условия обеспечения заданного коэффициента усиления ОУ. Зададимся величиной сопротивления R2=1 кОм, а R1 найдем из следующего соотношения

(5.5.13)

Получим R1 = 600 Ом .

          Дроссели L1 – L3 и емкость С1 предназначены для предотвращения возможных обратных связей между каскадами через цепи АРУ, поэтому, не производя расчета принимаем их значения L1=L2=L3=0.1Гн, С1=0.1мкФ.

Принципиальная схема блока АРУ показана на рисунке 7.

Рисунок 7. Принципиальная схема блока АРУ.

5.6. Принципы построения цифровых синтезаторов частоты.

Цифровой синтезатор частоты – это схема комбинационного синтеза выходной частоты на основе набора высокостабильных опорных частот внутренних гетеродинов. Синтезатор частот позволяет точно установить частоту настройки приемника без участия сигнала принимаемой станции, т.е. независимо от его уровня и колебаний по амплитуде и фазе. поскольку частота современных радиовещательных передатчиков поддерживается постоянной с высокой точностью, настройка приемника при помощи синтезатора частот оказывается стабильной.

Наиболее распространены в бытовых радиоприемных устройствах цифровые синтезаторы частот с частотной автоподстройкой (ЧАП), работающие по методу косвенного синтеза (3). Структурная схема подобного устройства показана на Рисунок. 8.

Из стабильной опорной частоты кварцевого генератора путем деления частоты образуются стробирующие импульсы, открывающие на строго определенное время счетчик импульсов. Число импульсов, поступающих на счетчик, определяется частотой местного гетеродина. Образовавшийся сигнал поступает в виде двоичного кола на цифровой компаратор и сравнивается с сигналами от регистров установки частоты. При совпадении кодов регистра и счетчика на выходе отсутствует сигнал ошибки. В противном случае сигнал ошибки подается на ЦАП, формирующий управляющее напряжение, используемое для подстройки гетеродина.


Синтезаторы частоты крупными фирмами выпускаются в виде монокристалла, готового для установки в схему всеволнового приемника . Примером такой микросхемы может служить цифровой синтезатор частоты TC914OP японской фирмы Sansui , который помимо перестройки частоты гетеродина также вырабатывает постоянное напряжение для управления смещением варикапов контуров преселектора, а также позволяет подавать напряжение смещения на диапазонные варикапы

Рисунок.8. Структурная схема цифровые синтезаторы частот с частотной автоподстройкой (ЧАП).


5.7 Расчет интегратора.

В роли интегратора выступает обычная интегрирующая цепочка для выделения импульсов большей длительности (синхроимпульсов). Зададимся что синхроимпульсы должны поступать таким образом что бы в каждый канал поступало 100 информационных, тогда синхроимпульсы должны поступать с частотой Fси=30Гц и иметь длительность равную по времени прохождению 100  информационных импульсов. В качестве интегрирующей цепочки возьмем обычную RC цепь, которая для которой должно выполняться условие Fси=, где . Зададимся сопротивлением в 100Oм и рассчитаем емкость.

                                      (5.7.1)

Таким образом рассчитали, что R=100Oм, а С=300мФ. Принципиальная схема интегрирующей цепи представлена на    рисунке  9.

Рисунок 9. Схема интегрирующей цепочки.

5.8 Расчет ФНЧ.

Как уже было сказано ранее для демодуляции сигнала с ШИМ нужно пропустить видеоимпульсы через ФНЧ с граничной частотой Fв, где 0.5Fи> Fв >Fmax. Где Fи – частота тактовых периодов, которую следует выбрать выше максимальной частоты спектра сигнала сообщения как минимум в два раза, а обычно от 2.5 до 5 раз. Таким образом Fmax=3000Гц, Fи= 9000Гц. Тогда Fв следует выбрать из периода 4500> Fв >3000. Выберем Fв= 4000Гц . Далее для расчета ФНЧ надо задаться активным сопротивлением нагрузки Rн=100Om. Теперь можем записать:

                                                      (5.8.1)

Fв=                                                   (5.8.2)

Из () и () можем рассчитать L и С как:

                               (5.8.3)

                     (5.8.4)

Таким образом рассчитали, что L=0.05Гн, а С=6мкФ. Принципиальная схема фильтра представлена на рисунке 10.

Рисунок10. Принципиальная схема ФНЧ.


5.9 Выбор каскад совпадения.

В качестве каскада совпадения будим использовать D-триггер. На D вход будут подаваться информационные импульсы, а в качестве синхроимпульсов будим использовать сигнал от каскадов МВ. Таким образом при подаче на триггер синхроимпульса он пропустить на вход ДМ информационный сигнал. Использовать будим SN74ALS74N – два  синхронных D-триггера. Хотя есть множество микросхем, но используем именно эту из соображений, что у нас два канала , а значит будет необходима два триггера. В других микросхемах четыре или шесть триггеров, которые не нужны. Структурная схема микросхемы представлена на рисунке11.

Рисунок 11. Структурная схема SN74ALS74N

Электрические параметры  ИМС SN74ALS74N.

Напряжение питание -  4.5 … 5.5 В

Потребляемый ток  не более 8mA

Диапазон рабочих температур от -55 до +125

Максимальное входное напряжение 2В


5.11     Выбор двухстороннего ограничителя.

В качестве двухстороннего ограничителя будим использовать компаратор, выполненный в виде ИМС LM393AN. Работу компаратора можно описать следующим уравнением:

                                    (5.9.1)

где E1=Uвх, а E0=0. Как ранее было сказано уровень ограничения следует выбрать из условия Uпор ≈ 0.5Uи, где Uи – амплитуда видеоимпульсов. Получаем что Uпор ≈0.5В. Таким образом все что ниже порогового уровня будит отсекаться, что приводит к снижению действия помех. Временная диаграмма, поясняющие принцип работы представлена на рисунке12.

Рисунке 12. Временные диаграммы, поясняющие принцип работы компаратора.

Принципиальная схема самого компаратора представлена на рисуноке 13.

Рисунок 13. Принципиальная схема компаратора.

Электрические параметры  ИМС LM393AN:

Напряжение питание -  1.5 … 18 В

Потребляемый ток  не более 100nA

Диапазон рабочих температур от -30 до +90

5.10   ыбор мультивибратора.

В качестве ждущего мультивибратора выберем ИМС SN54L123T от производителя TIX. ИМС представляет собой два ждущих мультивибратора. Ждущий мультивибратор пока есть синхроимпульс, который приходит с интегрирующей цепи, формирует импульс синхронизации на D – триггер. По срезу синхроимпульса запускается второй ждущий мультивибратор, который  формирует импульс синхронизации для второго D – триггера. Таким образом происходит разделение входной последовательности информационных импульсов по каналам. Структурная схема микросхемы представлена на рисунке14.

Рисунок 14. Структурная схема микросхемы SN54L123T.

На вход B1 подаются синхроимпульсы с интегратора, с входа Q1 сигнал подается на B2 и на синхровход первого D-триггера. С выхода Q2 синхровход второго D-триггера.

Электрические параметры  ИМС SN54L123T.

Напряжение питание -  4.5 … 5.5 В

Потребляемый ток  не более 15mA

Диапазон рабочих температур от -55 до +125


6 МОДЕЛИРОВАНИЕ УЗЛА ВРЕМЕННОГО РАЗДЕЛЕНИЯ КАНАЛОВ

Моделирование производилось в среде Electronic WorkBench. Было собран узел временного разделения входных импульсов по двум каналам. В роли информационных импульсов была создана случайная  последовательность ШИМ при помощи Word Generator. Им же были сформированы синхроимпульсы разделения. Для анализа выходных процессов во всех узлах схемы   используем Logic Analyzer. Исследуемая схема представлена на рисунке 15.

Рисунок 15. Смоделированная схема узла временного разделения каналов.

На схеме MV – мультивибраторы. Далее запускаем схему и анализируем выходные сигналы. Первая строчка в Logic Analyzer это сигнал ШИМ, вторая смоделированный  синхроимпульс. Третья временная диаграмма снятая с выхода MВ1, четвертая с MВ2. В пятой строке временная диаграмма снятая с выхода первого канала, а в шестой с выхода второго. Временный диаграммы представлены на рисунке 16. Как видно из диаграмм, действительно при появлении синхроимпульса открывается первый D – триггер и на вход первого канала проходит последовательность информационных импульсов, по срезу импульса на МВ1, запускается МВ2 и открывает второй канал, что соответствует проходу импульсов во второй канал и закрытие первого. Таким образом, делаем вывод, что промоделированная схема работает в соответствии с условиями работы приемника.

Рисунок 16. Временные диаграммы входных/выходных сигналов промоделированной схемы.


7 КОНСТРУКТИВНЫЙ РАСЧЕТ КОРПУСА РПРУ

Первым делом зададимся типом корпуса, который будит использоваться. Для изделия будим использовать не герметичный корпус с принудительным охлаждением. Условия эксплуатации УХЛ4.1 (ГОСТ 15150-75):

- Для эксплуатации в помещениях с кондиционированным или частично кондиционированным воздухом

- Для макроклиматических районов с умеренным и холодным климатом.

Рабочие температуры +10 … +25

Предельная рабочая температура +40

Зададимся значениями размера блока и мощностью рассеиваемой в блоке. Пусть мощность рассеиваемая в блоке Р=200Вт, а массовый расход воздуха в среднем G=0.2кг/c. Тогда найдем средней перегрев воздуха в блоке по следующей формуле:

                                                        (7.1.1)

                                                       

Площадь поперечного в направлении продува сечения блока равна:

                                                    (7.1.2)

где  и первый и второй размеры корпуса, перпендикулярные направлению продува. Зададимся , что оба размера равны 20см, тогда:

                                                   

Коэффициент m1 зависимости от массового расхода охлаждающего воздуха :

                               (7.1.3)

                                         

Коэффициент m2  зависимости от поперечного в направлении продува сечения корпуса блока :

                                           (7.1.4)

                                        

Коэффициент m3  зависимости от длины корпуса в направлении продува

                                                   (7.1.5)

где =0.5 размер корпуса блока в направлении продува.

                                                

Коэффициент m4 в зависимости от коэффициента заполнения :

                                   (7.1.6)

где 0.3 коэффициент заполнения блока.

                                

Перегрев нагретой зоны блока с принудительным охлаждением :

                                     (7.1.7)

         

Условная поверхность нагретой зоны :

                            (7.1.8)

                

Удельная мощность элемента выделяющего тепло:

                                                       (7.1.9)

где     =70 мощность, рассеиваемая теплонагруженным элементом, =1 площадь поверхности элемента.

                                                          

Удельная мощность нагретой зоны :

                                                        (7.1.10)

                                                                  

Перегрев поверхности  элемента :

              (7.1.11)

где L=0.3 расстояние по движению воздуха от входного сечения, до  элемента.

                 

Перегрев среды, окружающей элемент :

              (7.1.12)

           

Температура нагретой зоны :

                                (7.1.13)

где =20 температура охлаждающего воздуха на входе блока.

                                              

Средняя температура воздуха в блоке :

                                (7.1.14)

                                        

Температура воздуха на выходе из блока :

                                     (7.1.15)

                                      

Температура среды, окружающей элемент :

                                        (7.1.16)

                                                         

Сведем все данные в таблицы:

Исходные данные:

Мощность, рассеиваемая в блоке : 200
Массовый расход воздуха : 0,2
Первый размер корпуса блока, перпендикулярный направлению продува 0,2
Второй размер корпуса блока, перпендикулярный направлению продува : 0,2
Размер корпуса блока в направлении продува : 0,5
Коэффициент заполнения блока : 0,3
Суммарная мощность элементов : 70
Мощность, рассеиваемая теплонагруженным элементом : 70
Площадь поверхности элемента : 1
Расстояние по движению воздуха от входного сечения, до элемента : 0,3
Температура охлаждающего воздуха на входе блока : 20

Расчётные данные:

Средний перегрев воздуха в блоке : 0,5
Площадь поперечного в направлении продува сечения блока : 0,04
Коэффициент m1 зависимости от массового расхода охлаждающего воздуха: 0,002
Коэффициент m2 зависимости от поперечного в направлении продува сечения корпуса блока : 3,695
Коэффициент m3 зависимости от длины корпуса в напр. продува: 2,083
Коэффициент m4 зависимости от коэффициента заполнения : 1,232
Перегрев нагретой зоны блока с принудительным охлаждением : 4,74
Условная поверхность нагретой зоны : 0,2
Удельная мощность 1-го элемента : 70
Удельная мощность нагретой зоны : 35
Перегрев поверхности 1-го элемента : 4,171
Перегрев среды, окружающей 1-й элемент : 0,44
Температура нагретой зоны : 24,74
Средняя температура воздуха в блоке : 20,5
Температура воздуха на выходе из блока : 21
Температура поверхности 1-го элемента : 24,171
Температура среды, окружающей 1-й элемент : 20,44

ЗАКЛЮЧЕНИЕ

В ходе курсового проекта был разработан супергетеродинный приемник, с возможность приема сигналов с временным уплотнение и ШИМ. Приемник содержит цифровой синтезатор частот с цифровой петлей ЧАП и систему усиления АРУ. Каскады временной обработке выполнены на распространенных ИМС, которые доступны и недороги в свободной продаже. Использование ИМС не только облегчает разработку приемника, но и упрощает его настройку т.к. ИМС не требуют её а уже отлажены и работают с заданным параметрам. Использование подобных микросхем особенно актуально в универсальной бытовой технике – музыкальных центрах, телевизорах, автомагнитолах, переносных карманных приемниках и т.п.

Разработанное в ходе выполнения курсового проекта устройство имеет следующие характеристики:

·       Реальная чувствительность - 100мкВ

·       Динамический диапазон на входе - 85дБ

·       Динамический диапазон на входе при АРУ - 5 дБ

Избирательность:

·             по соседнему каналу не менее 50дБ

·             по зеркальному каналу не менее 90 дБ

·             Диапазон принимаемых частот 4.438 – 4.650 МГц

·             Промежуточная частота - 468кГц

·             Отн.нестабильность гетеродина -

·             Напряжение питания всего блока – 9 В

·             Коэффициент подстройки гетеродина – 15

·             К-т регулирования АРУ – 85 Дб


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1.  Проектирование радиоприемных устройств. под ред. А.П. Сиверса Учебное пособие для вузов.- М., «Сов.радио», 1976

2.  Овсянников Н.И. Кремниевые биполярные транзисторы – Справочное пособие.-М.:Выш.шк.,1989

3.  Рэд Э.Т. Схемотехника радиоприемников. Практическое пособие: Пер.с нем.-М.:Мир,1989

4.  Рэд Э.Т. Справочное пособие по высокочастотной схемотехнике: Схемы, блоки, 50-омная схемотехника: Пер с нем.-М.:1990


Поз.

Обозн

Наименование

Кол Прим.

Конденсаторы

C1 K50-16  – 220 mkФ 1
С2,С5 K10-17А –  51 пФ 2
С4 K10-17А – 100 пФ 1
С5 K10-17А – 51пФ 1
С6, С24 K10-17А – 3,9пФ 2
С7-С9,22 K10-17А – 15пФ 3
С10, С23 K50-16 – 220 mkФ 2
С12 С14 25 K50-16 –  680mkФ 3
С13, С18 K10-17А – 18 пФ 2
С15, С16 K50-16 – 2,2 mkФ 2
С19 K50-16 –  680 mkФ 1
С21, С11 K10-17А – 20пФ 2
С27, С31 K10-17А  – 18пФ 2
С28, С32 K50-16 – 680 mkФ 2
С29, С30 K10-17А – 1 пФ 2
С36 K10-17А – 2,7пФ 1
С37 K50-16 – 5 mkФ 1

Резисторы

R1 R6 7 8 С2-29В - 0.125 – 680 Ом  ±0,1 % 4
R2 R3 4 С2-29В - 0.125 – 22 кОм  ±0,1 % 3
R5 R9 С2-29В - 0.125 – 30 кОм  ±0,1 % 2
R10 R13 С2-29В - 0.125 – 220 кОм  ±0,1 % 2
Спецификация Лит. Масса Масштаб
Изм Лист № докум. Подп. Дата
Разраб. Астапкович
Пров.

Курочкин

Т.контр Лист 1 Листов 3
БГУИР гр.341201
Н.контр
Утв.

Поз.

Обозн

Наименование

Кол Прим.
R11 R15 23 С2-29В - 0.125 – 1 кОм  ±0,1 % 3
R12 R14 16 С2-29В - 0.125 – 220 кОм  ±0,1 % 3
R18 R19 С2-29В - 0.125 – 220 кОм  ±0,1 % 2
R20 С2-29В - 0.125 – 30 кОм  ±0,1 % 1
R21 С2-29В - 0.125 – 22 кОм  ±0,1 % 1
R22 С2-29В - 0.125 – 22 кОм  ±0,1 % 1
R24 R27 С2-29В - 0.125 – 220 кОм  ±0,1 % 2
R29 С2-29В - 0.125 – 1 кОм  ±0,1 % 1
R30 С2-29В - 0.125 –  6,8 кОм  ±0,1 % 1
R31 С2-29В - 0.125 – 470 кОм  ±0,1 % 1
R32 R33 С2-29В - 0.125 – 270 Ом  ±0,1 % 2
R34 С2-29В - 0.125 – 100 Ом  ±0,1 % 1
R35 С2-29В - 0.125 – 1,5 кОм  ±0,1 % 1
R36 К37 С2-29В - 0.125 – 220 Ом  ±0,1 % 2

Индуктивности

L1 EC-24-391К 1.2mkГн ±1 % 2
L2 L5 L7 EC-24-R70M 0.7mkГн ±1 % 3
L3 EC-24-R30M 0.3mkГн ±1 % 1
L4 L6 EC-24-391К 1.2mkГн ±1 % 2
L8 L13 EC-24-181K 180mkГн ±1 % 2
L9 L12 EC-24-101K 100mkГн ±1 % 2
Спецификация Лит. Масса Масштаб
Изм Лист № докум. Подп. Дата
Разраб. Астапкович
Пров.

Курочкин

Т.контр Лист 2 Листов 3
БГУИР гр.341201
Н.контр
Утв.

Поз.

Обозн

Наименование

Кол Прим.
L10 L11 EC-24-51К  53mкГн ±1 % 2
L15 EC-24-R70M 0.7mkГн ±1 % 1

Транзисторы

VT1-VT5 КТ 325 A 9
Спецификация Лит. Масса Масштаб
Изм Лист № докум. Подп. Дата
Разраб. Астапкович
Пров.

Курочкин

Т.контр Лист 3 Листов 3
БГУИР гр.341201
Н.контр

Страницы: 1, 2


© 2010 САЙТ РЕФЕРАТОВ