бесплано рефераты

Разделы

рефераты   Главная
рефераты   Искусство и культура
рефераты   Кибернетика
рефераты   Метрология
рефераты   Микроэкономика
рефераты   Мировая экономика МЭО
рефераты   РЦБ ценные бумаги
рефераты   САПР
рефераты   ТГП
рефераты   Теория вероятностей
рефераты   ТММ
рефераты   Автомобиль и дорога
рефераты   Компьютерные сети
рефераты   Конституционное право
      зарубежныйх стран
рефераты   Конституционное право
      России
рефераты   Краткое содержание
      произведений
рефераты   Криминалистика и
      криминология
рефераты   Военное дело и
      гражданская оборона
рефераты   География и экономическая
      география
рефераты   Геология гидрология и
      геодезия
рефераты   Спорт и туризм
рефераты   Рефераты Физика
рефераты   Физкультура и спорт
рефераты   Философия
рефераты   Финансы
рефераты   Фотография
рефераты   Музыка
рефераты   Авиация и космонавтика
рефераты   Наука и техника
рефераты   Кулинария
рефераты   Культурология
рефераты   Краеведение и этнография
рефераты   Религия и мифология
рефераты   Медицина
рефераты   Сексология
рефераты   Информатика
      программирование
 
 
 

Проект линии по производству хлебобулочных изделий

Переключатели служат для изменения направления потока аэросмеси в материалопроводе. На складе используются 2-х позиционные переключатели: М-125; М-126; ПДЭ-2-75; многопозиционные: М-129; М-130; М-131; М-132.

Питатели: шлюзовые (роторные) М-116; М-122; шнековые ПШМ-1; ПШМ-2; ПШМ-3 камерные ХКН-0,1Б. Для очистки воздуха от частиц муки рекомендуют самовстряхивающие фильтры марки ХЕ-161; ХЕ-162 для силосов ХЕ и для бункеров М-102; М-111; М-118.

Линии по производству булочки московской выбираем двухпозиционный переключатель М-125. Фильтры ХЕ-161. Питатели: роторные М-122, шнековые ПШМ-1. Материалопровод диаметр 42х2.

Другие виды сырья, основное и дополнительное на хлебозавод доставляется специальным транспортом. При поступлении в жидком виде сырье перекачивают насосом в емкости для хранения, если же оно поступает в сухом виде его предварительно растворяют в специальных установках и хранят в жидком виде. Затем дополнительное сырье перекачивают насосом по трубопроводам в расходные бачки, откуда через дозировочное устройство оно подается для приготовления полуфабриката и теста. Жидкие компоненты при порционном замесе отмеривают по объему, автоматическими бачками солемерными АСБ-20, водомерными АВБ-100, АВБ-200.

Работающие по весовому принципу дозировочные станции ВНИИХП-0,4А – дозируют до 5 компонентов одновременно. Дозатор жидких компонентов Ш2-ХДБ.

При непрерывном тестоприготовлении жидкие компоненты отмериваются в автоматических станциях ВНИИХП-0,5 и ВНИИХП-0,6. Полуфабрикаты жидкой консистенции дозируются с помощью кранового и черпакового дозаторов.

Вместимость резервуаров для хранения сырья, поступающего на завод в жидком виде определяют по формуле

,(2.27)

гдеGж – расход жидкого сырья в сутки;

К – коэффициент увеличения объема резервуара (1,1 – 1,2);

п – срок хранения, в сут.;

– плотность жидкого сырья в кк/м3.

Вместимость резервуаров для сырья, поступающего на завод в сухом виде, а затем растворенного

,(2.28)

гдеGс – суточный расход сухого сырья;

К1 – запас емкости на пенообразование (0,1…0,25);

А – доза сырья, в кг, в 100 кг раствора.

Асоли = 26 кг = 1200 кг/м3;

Асах = 50 – 65 кг = 1230 кг/м3;

Адр = 25 кг = 1050 кг/м3.

Исходя из полученных результатов, необходимо подобрать емкости, баки, цистерны, установки для хранения разжиженного сырья.

Для бестарного хранения и внутризаводского транспортирования раствора сахара можно использовать пневматическую установку или Т1-ХСП. Для раствора соли Т1-ХСТ, жидкого жира Т1-ХУБ, молочные сыворотки и молочные продукты хранят в универсальном танке вместимостью 1,2 – 2 м3 с охлаждающей рубашкой. В проекте необходимо рассмотреть установку дрожжевых мешалок Х-14, если сахар хранится в жидком виде – сахарорастворитель ХЛБ-12, жирорастворитель СЖР-300.

Вместимость резервуаров для хранения сырья, поступающего на завод в жидком виде, находим по формуле (2.27).

Вместимость резервуаров для сырья, поступающего на завод в сухом виде, а затем растворенного находим по формуле (2.28)

 м3;

 м3;

 м3.

Силосно-просеивательное отделение.

Для обеспечения нормального ведения технологического процесса приготовления теста проводят обязательно подготовку муки к производству, включающую следующие операции: смешивание, просеивание, удаление металлопримесей.

Для расчета оборудования отдельных линий необходимо определить производительность просеивателя, которая определяется по формуле

,(2.29)

гдеF – просеивающая поверхность машины, м2;

q – производительность 1 м2, для ржаной муки q = 1,5-2,0 т/ч,

для пшеничной q = 2-3 т/ч.

Используются просеивающие машины с цилиндрическим или парамидальным ситом ПБ-1,5; «Пионер-ПП», «Воронеж».

При периодической загрузке производственных силосов, время работы просеивателя для пропуска часового расхода муки

,(2.30)

где Мч – часовой расход муки определенного сорта, кг/ч,


Коэффициент использования просеивателя

(2.31)

Количество мучных линий для отдельных сортов муки

,(2.32)

где Qч – часовая производительность мучной линии, проверяется по производительности просеивателя, кг/ч.

На хлебопекарных предприятиях для просеивания муки применяют просеиватели ПБ-1,5, «Воронеж». Количество производственных силосов принимают из расчета одновременной подачи муки на тестоприготовительную линию из 2-х силосов.

Запас муки в силосах (G) зависит от производительности линии и для отдельных сортов муки составит

,(2.33)

гдеТ – срок запаса муки (Т = 2-8 ч).

Количество производственных силосов определяют по формуле

,(2.34)


гдеq – масса муки в силосе.

Масса муки в силосе ориентировочно может быть рассчитана

,(2.35)

гдеV – объем силоса, м3;

 - насыпная плотность муки, кг/м3.

Продолжительность заполнения одного силоса (в мин) равна

,(2.36)

гдеQч – часовая производительность мучной линии, кг/ч.

Для хранения производственного запаса муки применяют металлические стандартные силоса ХЕ-63В-1,85; ХЕ-63-2,9, м3.

Применяем просеиватель ПБ-1,5 F = 1,5 м2, q = 2 т/ч, Q = т/ч.

 мин.

Коэффициент использования просеивателя

Количество мучных линий составит

Принимаем 1 мучную линию.

Запас муки в силосах G зависит от производительности линий и для отдельных сортов муки составит

Количество производственных силосов находим по формуле (2.34)

ХЕ-63В-2,9, V = 2,9 м3, q =  кг.

Продолжительность заполнения 1-го силоса находим по формуле (2.36)

 мин.

Расчет оборудования тестоприготовительного отделения хлебозавода.

Технический расчет тестоприготовительных агрегатов непрерывного действия сводится к проверке вместимости бродильного аппарата и расчету объема емкости для кратковременного брожения теста (емкость над тестоделителем). Расчетный объем бункера в м3 для брожения опары в агрегата А2 ХТТ.

Для пшеничного теста

, (2.37)

гдеРч - часовая производительность печи, кг/ч;

tбр – продолжительность брожения опары, мин.;

Р – расход муки на замес опары, %;

Вхл – выход хлеба, %;

п – количество секций в бункере;

qо – масса муки загружаемая на 100 л геометрического объема емкости, для опары, кг.

п = 6.

Расчетную вместимость бункера для брожения закваски определяют по часовому расходу муки на закваску

,(2.38)

гдеG – расход муки на приготовление закваски, %;

Gч – содержание муки в закваске, идущей на приготовление новой порции закваски, %;

Мч – минутный расход сырья.

(2.39)

Петли сменяемости секций бункера тестоприготовительного агрегата, мин

,(2.40)

гдеtбр – время брожения закваски, мин.

Количество муки в кг, загружаемой в одну секцию бункера

,(2.41)


Зная Мс – объем закваски в одной секции бункера можно вычислить

,(2.42)

гдеq3 – масса муки, загружаемая на 100 л геометрического объема емкости для закваски.

Зная значение объема одной секции, общий объем бункера составит

(2.43)

Если расчет Vр бункера окажется несколько больше стандартного Vс, предусматривают увеличение высоты цилиндрической части бункера на высоту

,(2.44)

Его расчетный объем находим по формуле

,(2.45)

где - часовой расход жидкого полуфабриката, т/ч;

tбр – длительность брожения полуфабриката, ч;

 - плотность выброженного полуфабриката ( = 750-800 кг/м3);

(1+х) – коэффициент, учитывающий увеличение объема полуфабриката в процессе брожения (х = 0,25-0,3).

Так как емкость брожения ведущая, то не рассчитываем дозировочные станции.

Объем емкости под делителем для кратковременного брожения теста, м3

, (2.46)

гдеРч - часовая производительность печи;

tбр – продолжительность брожения теста в емкости над тестоделителем;

Вхл – выход хлеба, %;

п – количество секций в бункере;

qт – масса муки загружаемая на 100 л геометрического объема емкости, для теста, кг.

Значение q в зависимости от сорта переработанной муки и вида полуфабриката приведено в таблице 2.9.

Таблица 2.9

Сорт муки Полуфабрикаты
закваска опара тесто
в/с - 26 32

Расчетный объем бункера в м3 для брожения опары пшеничного теста находится по формуле (2.37)

 м3


Расходную вместимость бункера для брожения закваски определяют по часовому расходу муки на закваску (густая закваска) определяем по формуле (2.38)

Ритм сменяемости секций бункера

 мин.

Часовая сменяемость секций

Исходя из формулы (2.41) находим количество муки, загружаемое в одну секцию бункера

 кг.

Объем закваски в 1-й секции бункера

 м3

 м3 (И8-ХТА-6).


Емкости над тестоделителем для кратковременного брожения теста определяем по формуле (2.37)

 м3.

Оборудование тесторазделочных линий.

На тесторазделочных машинах осуществляется деление теста на куски заданной массы, их округление, предварительная расстойка, закатка, окончательная расстойка и надрезка (наколка).

Количество тесторазделочных машин рассчитывают по минутному расходу тестовых заготовок и производительности делителя. Потребность в тестовых заготовках определяется по формуле

,(2.47)

гдеРч – часовая производительность печи для определенного сорта хлеба, т/ч;

m – масса тестовой заготовки, кг.

Количество тестоделительных машин на каждый сорт изделия находится по формуле

,(2.48)

гдеnд – производительность делителя, кусков в минуту;

х – коэффициент запаса машины (х = 1,04-1,05).


Таблица 2.10

Марка Орган нагнет. Масса тестовой заготовки Точность деления Производительность Назначение тестоделителей
1 2 3 4 5 6
А2-ХЛ1-09 валки 0,05 – 0,2

 1 %

40 – 100 Для мелкоштучных изделий из пшеничной сортовой муки

Рч = 302,4; m = 0,2 кг

А2-ХТН пд = 60 куск/мин.

 шт/мин.

Округлители и закаточные машины для батонообразных изделий по производительности рассчитаны на обслуживание типовых делителей установленных в технологических линиях. Их характеристики приведены в таблице 2.11.

Таблица 2.11

Показатели Округлители Закаточные
ХТО Т1-ХТН Т1-ЗТС МЗА-50 Т1-ХТ2-31 С500М
Производительность, куск/мин 100 63 100 60 70 80
Масса тестовых заготовок

0,01

1,100

0,200

0,24

0,05

0,24

0,055

0,55

0,22

1,100

0,02

0,15

Выбираем округлитель Т1-ХТН, производительностью 63 куск/мин. массой 0,2 кг.

Для восстановления структуры тестовых заготовок, для батонообразных и мелкоштучных изделий предусмотрена предварительная расстойка в течение 5 – 8 мин осуществляемая на ленте транспортера или в специальных шкафах с ленточными либо люлечными цепным конвейером.

Длина конвейеров шкафа предварительной расстойки в м, равна

,(2.49)

гдеlпр = (5…8 мин) – продолжительность расстойки;

l – расстояние между центрами тестовых заготовок (0,20…0,30) м;

m – масса тестовой заготовки.

Пересчет на тестовую заготовку производится по формуле

, (2.50)

гдеmхл – масса остывшего хлеба, кг;

qуп, qус – затраты на упек и усушку, %.

Скорость движения транспортера

,(2.51)

соответственно

,(2.52)

Для булочки московской


 кг.

 м/с

так как L > 8 – выбираем шкаф предварительной расстойки.

Для окончательной расстойки тестовых заготовок используют различные конвейерные шкафы. Расчет или проверку производительности типовых шкафов осуществляют следующим образом.

Рассчитываем количество рабочих люлек в шкафу

,(2.53)

гдеtок – продолжительность окончательной расстойки (25 120 мин);

пл – количество тестовых заготовок на 1-й люльке.

Тогда производительность конвейерного шкафа равна, м/ч

,(2.54)

гдеNр – рабочие люльки;

Nх – холостые люльки.

Общее число люлек в шкафу равно

,(2.55)

соответственно

,(2.56)

где Nобщ – соответствует типу шкафа.

Общая длина цепи конвейерного шкафа для расстойки

,(2.57)

гдеQ – шаг люлек (0,3 – 0,6).

Скорость при непрерывном движении цепного конвейера

,(2.58)

Таблица 2.12 – Технологическая характеристика шкафов для окончательной расстойки

Марка шкафа Количество кусков теста на люльке Число люлек Производ. по хлебу, т/сут
Nобщ Nраб
Универсальные
РШВ 6/8 325 270 15

Для 1 линии РШВ.

 кг/ч

Nх = 325 – 303 = 22

 м

 м/с.

Оборудование хлебохранилищ и экспедиций.

Хлебобулочные изделия после выпечки поступают в хлебохранилище для остывания и хранения. На большинстве существующих хлебопекарных предприятий внутризаводская транспортировка готовых изделий осуществляется на лотковых вагонетках с ручной укладкой продукции и циркуляционных столов. Внедряют механизированные системы по укладке готовых изделий в лотки, загрузка лотков в контейнеры, транспортировка их в хлебохранилище и после остывания хлеба – в экспедицию для отправки в торговую сеть. Количество контейнеров и вагонеток для остывания и хранения готовых изделий зависит от общей часовой выработки по каждому изделию, сроков их хранения, размера и вида изделий, перерыва в вывозе продукции.

Масса хлеба и булочных изделий, подлежащих хранению находится по формуле

Qобщ = Р1t1 + P2t2 + P3t3, (2.59)

гдеPi – производительность печей по видам изделий, кг/ч;

ti – продолжительность работы печей по графику для отдельных сортов хлеба за период с 20 до 4 ч.

 кг.

Часовое количество лотков для хранения отдельного сорта хлеба, шт, рассчитывается по формуле

, (2.60)

гдеn – количество хлеба на лотке, шт.;

m – масса хлеба, кг.

В проекте принимаем контейнер УкрНИИПродМаша вмещающий 32 лотка. Размеры лотка (740х450) контейнеры загружаются в автомашины в количестве 4 шт.

 шт.

Часовое число контейнеров, в шт

,(2.61)

гдеК – количество лотков в контейнере, шт.

К = 32

Ритм заполнения контейнера, мин

, (2.62)

мин.

Расчетное число контейнеров, шт, для хранения хлеба и булочных изделий на период с 20 00 до 4 00 ч.

,(2.63)

гдеТ – время работы печей с 20 00 до 4 00 ч.

 шт.

Общее число контейнеров находим по формуле (2.25)

Nобщ = 17 + 31 + 19 = 67.

Таблица 2.13 – Сводные данные по расчету оборудования хлебохранилищ

Наименование изделий Часовая выработка, кг/ч Вместимость Часовое количество Ритм заполнения контейнера, мин. Расчетное число контейнеров Принято в проекте контейнеров
лотка контейнера лотков контейнеров
Булочка московская 302,4 15 480 100,8 2,85 21,05 19 67

Для перевозки хлеба используют специализированный автотранспорт. Число машин для перевозки хлеба равно

,(2.64)

где Рс – масса хлеба отправляемого в торговую сеть в сутки, кг/сут;

Q – масса хлеба в автофургоне, кг.

,(2.65)

гдеGл – масса изделий на лотке, кг;

Nл – количество лотков в машине.

 кг

Число отпускных мест у экспедиционной платформы

 (2.66)

гдеtхл – продолжительность погрузки хлеба в автофургон (t = 20 мин);

Тх – продолжительность отпуска хлеба с предприятия, (Тх = 12-14 ч.);

к – коэффициент, учитывающий отправку хлеба в часы «пик» (к = 2-2,5).

п = 2,95 = 3

2.9 Строительная часть

В эту часть проекта входит составление генерального плана, объемно-планировочное решение, выбор строительных конструкций.

При проектировании руководствуются общими строительными нормами и правилами (СНиП).

Здания хлебозаводов относятся ко II классу; по долговечности ограждающих конструкций и по огнестойкости – ко II степени.

Генеральный план застройки территории.

Генплан - план участка с размещением зданий и сооружений, подъездных путей, коммуникаций, площадок, зеленых зон. Решение генерального плана продиктовано технологическими, санитарными, экологическими особенностями, влияющими на проектирование хлебозаводов, а также зданий и сооружений основного назначения СНиП П 89-80.

На площадке запроектированы следующие здания:

- производственно-административный корпус;

- склад БХМ;

- склад жидкого сырья;

- котельная;

- проходная.

На площадке расположены очистные сооружения и канализации. Отвод поверхностных вод запроектирован от зданий и сооружений к автомобильным проездам с дальнейшим выпуском в ливневые решетки. Предусмотрена зона отдыха, 20 % озеленения. Для прохода к зданиям и сооружениям предусмотрены асфальтовые тротуары.

На территории также имеются гаражи, прачечная, переносные металлические мусоросборники.

Архитектурно-строительные решения.

В комплекс зданий проектируемого хлебозавода входят: производственный корпус, административно-бытовой корпус, ряд подсобных зданий и сооружений.

Основное производственное помещение имеет комбинированное освещение: естественное и искусственное.

Бытовое и административно-управленческое помещение находится на втором этаже правого крыла здания хлебозавода.

В административном крыле здания хлебозавода располагаются: столовая, отдел кадров, комнаты дежурного слесаря и дежурного механика, медпункт, кабинет директора, главного инженера, главного технолога, зав. производством, начальника ПТП, начальника КИП, бухгалтерия, касса.

Конструктивное решение.

Конструктивная схема производственного корпуса принята каркасная. Каркас сборный железобетонный. Сетка колонн 6х6. Междуэтажные перекрытия из железобетонных плит. Фундаменты под колонны железобетонные стаканного типа. Колонны сборные железобетонные 40х40. Ригели перекрытия сборные железобетонные и стальные. Покрытие плоское утепленное с внутренними стоками. Полы – монолитные железобетонные, стальные листы, керамическая плитка, линолеум.

Окна в виде проемов с деревянными двойными переплетами по ГОСТ 8125-86.

В производственном корпусе предусмотрено следующее оборудование: водопровод объединенный, хозяйственно-питьевой, производственный и пожарный.

Канализация объединенная: производственная и хозяйственно-бытовая.

Отопление – от газовой котельной, расположенной на территории предприятия.

Электроосвещение осуществляется лампами накаливания.

Электроснабжение осуществляется через собственную трансформаторную подстанцию.

На предприятии установлены пожарно-охранные сигнализаторы.


3 Конструкторская часть

3.1 Описание проектируемой машины

Машина тестомесильная, прототипом которой выступила тестомесильная машина марки А2 – ХТТ, предназначена для замеса опары и теста из пшеничной и ржаной муки при выработки хлебобулочных изделий на предприятиях хлебопекарной промышленности.

Машина состоит (рисунок 3.1) из основания 1, блока замеса 2, дозатора муки 3, питателя муки 4, пульта управления 5 и привода 6.

Блок замеса (рисунок 3.2) имеет корытообразный корпус 6, изготовленный из нержавеющей стали, внутри которого расположен центральный вал 7. На валу соосно закреплены месильные элементы. Первые по ходу движения теста три элемента выполнены в виде винтовых крыльчаток 8 (зона смешивания), остальные четыре в виде плоских дисков 9 (зона пластифицирования).

Съемный блок 10 состоит из шести перегородок – по одной между двумя соседними подвижными элементами.

Сверху корпус закрыт перфорированной крышкой 1, позволяющий наблюдать за процессом замеса.

Жидкие компоненты вводятся через патрубок 3, густые (при необходимости) – через патрубок 2. Выход готового теста осуществляется через патрубок 4. Дозатор муки представляет собой алюминиевый корпус, внутри которого имеется вращающийся турникет, осуществляющий дозирование муки.

Питатель муки – это короб, изготовленный из оргстекла и выполняющий роль резервуара для запаса муки перед дозатором. В верхней и нижней частях питателя установлены датчики уровня, связанные с системой транспортирования муки.

Мука поступает в питатель, заполняет его и корпус дозатора. Турникет дозатора с заполненными мукой карманами, непрерывно поворачиваясь, подает муку в переднюю, часть блока замеса, где она смешивается винтовыми крыльчатками с жидкими компонентами при одновременном перемешивании вдоль вала.

Вращающиеся плоские диски в сочетании с блоком перегородок и корпусом блока замеса обеспечивают интенсивный промесс и пластификацию массы. Неподвижный скребок 5, установленный между валом и разгрузочным патрубком, способствует ускоренной выгрузке готового теста.

3.2 Расчет производительности и потребляемой мощности

Производительность тестомесильных машин непрерывного действия с рабочими органами в виде вращающихся лопастей или лопаток (кг / с)

П = z π (dл² – dв²) / 60 · 4 · s ·ρ · k1 · k2 ; (3.1)

где z – количество валов;

dл – наружный диаметр лопастей, м;

dв – диаметр вала, м;

s – шаг лопастей

n – частота вращения вала, об/мин;

ρ – плотность перемешиваемого полуфабриката, кг/м³;

k1 – коэффициент подачи (k1 = 0,1 ÷ 0,2);

k2 – отношение суммарной площади лопастей к винтовой поверхности того же диаметра и шага (k2 = 0,15 ÷ 0,20).

П = 1 · 3,14 (0,11 – 0,002) / 60 · 4 · 0,092 · 50 · 1080 · 0,2 · 0,20 = 0,28 кг/с

Ориентировочно мощность электродвигателя (кВт) тихоходных тестомесильных машин периодического или непрерывного действия


N = 0,4 G · R · ω · g · z / 1000 · η, (3.2)

где – G – масса теста в деже или рабочей камеры машины, кг;

R – максимальный радиус вращения месильного органа, м;

Z – число валов рабочих органов;

g- ускорение свободного падения, м/с (g = 9,81);

ω- угловая скорость вращения месильного органа, рад/с;

η- КПД приводного механизма машины (η = 0,8…0,85)

G = (а · b · h) 0,9 η (3.4)

G = (0,870 · 0,85 · 0,454) 0,9 · 1080 = 326,33

ω = π n / 30, рад/с (3.5)

ω = 3,14 · 50 / 30 = 5,2 рад/с

N = 0,4 · 326,33 · 0,153 · 5,2 · 1 / 1000 · 0,85 = 1,2 кВт ≈ 1,5 кВт из таблицы


4 Охрана труда

4.1 Анализ и обеспечение безопасных условий труда и мероприятия по улучшению

В хлебопекарном производстве вредными основными производственными факторами являются пыль, шум, повышенная температура воздуха, монотонность труда на ряде производственных операций. Во время эксплуатации оборудования возникает опасность поражения электрическим током, возможен взрыв мучной пыли, баллонов

В хлебобулочном цехе используются склады бестарного хранения муки. По взрывной, взрывопожарной и пожарной опасности предприятие относится к категории Б - цеха приготовления и транспортировки угольной пыли, древесной муки, сахарной пудры. Мука является не только горючим, но в аэрозольном состоянии и взрывоопасным веществом. Многие процессы и операции на складах бестарного хранения сопровождаются выделением муки в воздух, а также накоплением статического электричества на оборудовании и его элементах, для предупреждения которых применяются специальные меры.

Мука на склад бестарного хранения доставляется муковозами, из которых с помощью соединительного шланга она выгружается в бункер. Во время разгрузки соединительный трубопровод заземляется для того, чтобы исключить возможность накопления зарядов статического электричества. С этой же целью у загрузочного отверстия в бункере установлены конусы, соединенные с заземленным корпусом бункера. Мука, подаваемая в бункер, попадает на конус, ссыпается с него, при этом отдает накопившиеся заряды статического электричества, которые отводятся в землю. В воздухе помещений склада, а также в мукопросеивательном отделении, которое нередко является его частью, может находиться мучная пыль во взвешенном и осевшем состоянии на технологическом оборудовании и конструкциях. Она попадает в помещение через неплотности в технологическом оборудовании, корпусах весов, шнековых и ковшовых транспортеров, мукопроводовв рукавных фильтров и воздуховыпусков.

При движении муки по трубам аэрозольного транспорта возможно образование пробки. С целью их предотвращения воздух для аэрозольного транспорта осушают от влаги и масла. Необходимо постоянно следить за давлением воздуха в магистралях, так как его снижение неизбежно приведет к образованию пробки, признаком которой является повышение давления в системе. При этом работу аэрозольного транспорта должна быть прекращена и установлено место расположения пробки и завала. Завалы муки в трубах ликвидируют путем подачи сжатого воздуха через штуцера, вваренные на расстоянии 3-5 м один от другого по длине мукопроводов.

Для предупреждения выбросов муки при загрузке - разгрузке емкостей запрещено открывать крышки люков и смотровые окна. Для каждого питателя, переключателя устанавливаются нормальные и предельно допустимые величины давления воздуха, значения которых указываются специальными метками на контрольно-измерительных приборах (КИП).

За показаниями КИП необходимо тщательно следить, так как не только увеличение, но и снижение давления свидетельствует о нарушении режима работы системы аэрозольного транспорта и аспирационных систем, предназначенных для предупреждения поступления мучной пыли в помещения. При снижении расхода воздуха в системе аспирации нарушается режим работы всей аспирационной сети, и она перестает выполнять свои санитарно-гигиенические функции. Не разрешается работа с неисправными манометрами и другими КИП.

После просеивания мука поступает для замеса в шнековые прессы. Тестомесильные машины с подкатными дежами имеют приспособления, надежно запирающие дежу во время замеса на фундаментной плите машины. На тестомесильных машинах непрерывного действия устанавливаются блокировки крышек, при открывании которых отключается привод машины. Выгрузка теста из дежи осуществляется с помощью дежеопрокидывателей, которые ежегодно проверяются.

Тестомесильные агрегаты, макаронные прессы обычно располагают на площадках. Для их обслуживания предусмотрены удобные лестницы с перилами высотой 1 м.

Хлебобулочные изделия испекаются в печах различных типов и конструкций - камерные, ленточные и др. Для снижения теплоотдачи печи в помещение их поверхность покрыта теплоизоляцией так, чтобы на ее внешней поверхности температура не превышает 45 °С. Пекарные цехи изолированы от других помещений (тестомесильного, упаковочного и др.).

В хлебобулочном цехе предусмотрена автоматизированная линия производства макаронных изделий. Но существует опасность возникновения пыли за счёт нарушения герметизации оборудования и как следствие попадание пыли в помещения. Решающее значение в биологическом действии пыли имеет количественное содержание её в воздухе производственного помещения, превышающее уровень предельно допустимой концентрации (для муки = 6 мг/м 3 по ГОСТ 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны») Фактическая концентрация мучной пыли 4 мг/м3.

Пыль, находящаяся во взвешенном состоянии в воздухе помещений, взрывоопасна. Осевшая пыль (аэрогель) пожароопасная. При определённых условиях она способна переходить во взвешенное состояние, образовывая взрывоопасные смеси. Пыль может оказывать неблагоприятное действие на организм, вызывая заболевания органов дыхания, кожи и слизистых оболочек глаз мучная пыль - бронхиальную астму, кожный зуд, заболевание верхних дыхательных путей - риниты.

Органическая пыль растительного происхождения может вызвать у работников такие заболевания, как бронхиты, биссинозы и аллергические реакции.

Для предупреждения воздействия пыли на человека применяется система мер коллективной и индивидуальной защиты. Эти меры можно разделить на технологические - применение замкнутых технологий (возвращение очищенного воздуха в производство); технические – герметизация оборудования (сокращение или ликвидация выделение пыли

в помещение), вентиляция, местные отсосы (предупреждение поступления вредных веществ в помещение путем их отсоса мокрыми пылеулавливающими устройствами); индивидуальной защиты (применение респираторов).

Обслуживание оборудования для производства хлеба характеризуется концентрацией внимания оператора следящего за выполнением различных процессов. Для снижение зрительных нагрузок применяется боковое естественное освещение через боковые оконные проемы.

Для хлебопекарных предприятий норма естественного освещения согласно СниП 2305-95 «Естественное и искусственное освещение. Нормы проектирования», при боковом освещении для разряда зрительных работ составляет коэффициент естественной освещенности ~ 1,5 %. Разряд зрительных работ IV. Осуществляется надзор за технологическим оборудованием. Характеристика зрительных работ - средней точности. Фактическое значение коэффициента естественного освещения на рабочем месте составляет 0,6 -.0,7%. Это значение недостаточное.

При недостаточном естественном освещении или в темное время суток в производственных помещениях необходимо устанавливать мощные газоразрядные светильники, проводить побелку стен и потолка, отчищать стекла оконных проемов и ламп, контролировать освещенность, для чего используются люксметры.

Для удобства и безопасности очистки осветительных установок применяем передвижные тележки, телескопические лестницы, подвесные люльки. Очищать светильники следует при отключенном питании.

При недостаточности освещения в производственных помещениях необходимо устанавливать мощные светильники, проводить побелку стен и потолка, отчищать стекла оконных проемов и ламп, контролировать освещенность цеха.

Оборудование в хлебобулочных цехах является постоянным источником шума. Шум создается работой электродвигателей, рабочих органов, цепных передач и т.д.

Повышенный шум может послужить причиной профессионального заболевания - шумовой болезни, поражающей слуховую, нервную, сердечно- сосудистую, пищеварительную системы человека.

Уровень шума в цеху превышает предельно допустимый уровень (80 дБ) и составляет 90 дБ. Нормативным документом является СН 2.24/2.1.8.562-96. Расчет шума приводится в разделе 3.

В хлебобулочном цехе не применяется оборудование, совершающее колебательные, поступательно - возвращающие действия высокой частоты. Поэтому вибрация оборудования минимальна и ПДУ соответствует СН 2.24/2.1.8.562-96.

Основным способом борьбы с шумом является его ослабление или устранение непосредственно в источнике возникновения, применение звукопоглощения и звукоизоляции.

Главными направлениями борьбы с шумом являются его ослабление или ликвидация непосредственно в источнике образования. Для достижения этого: соответствии со СниП 11.22-77 необходимо применять звукоизолирующие кожухи» составлять график регулярной смазки рабочих органов и подшипников с по следующим контролем за их состоянием, применение пластмасс, текстолита, резины для изготовления деталей оборудования, Возможно так же использование звукопоглощающих элементов.

Звукоизоляция - уменьшение уровня шума с помощью защитного устройства, которое устанавливается между источником и приемником и имеет большую отражающую и (или) поглощающую способность. Обычно роль защитных устройств выполняют глушители шума, экраны или стенки изолированных объемов. Например, защитным устройством является кожух, которым закрывают машины и механизмы, или кабина, в которой находится оператор, управляющим процессами. Стенки кожухов и кабин изготовляют из листового проката и покрывают изнутри звукопоглощающим материалом.

Существует необходимость расчета звукоизоляции.

Большинство оборудования на хлебопекарных предприятиях является потребителем электрической энергии. Соответственно присутствует опасность поражения электрическим током. Основными причинами поражения электрическим током являются: случайное прикосновение к токоведущим частям, находящимся под напряжением в результате: ошибочных действий при проведении работ; не исправности защитных средств, которыми пострадавший касался, токоведущих электрооборудования в результате: повреждения изоляции токоведущих частей замыкания фазы сети на землю; падения провода (находящегося под напряжением) на конструктивные части электрооборудования и др.; появление напряжением на отключенных токоведущих частях в результате: ошибочного включения отключенной установки; замыкания между отключенными и находящимися под напряжением токоведущими частями; разряда молнии в электроустановку и др.

Возникновение напряжения шага на участке земли, где находится человек, в результате: замыкания фазы на землю; выноса потенциала протяженным токопроводящим предметом (трубопроводом, железнодорожными рельсами); неисправностей в устройстве защитного заземления и др.

Действие электрического тока на человека носит многообразный характер. Проходя через организм человека, электрический ток оказывает термическое электролитическое, а также биологическое действия. В нашем случае могут возникнуть такие электротравмы как электрический ожог. Электрический ожог - самая распространенная электротравма. Ожоги бывают двух видов: токовый (или контактный) и дуговой.

Токовый ожог обусловлен прохождением тока через тело человека в результате контакта с токоведущей частью и является следствием преобразования электрической энергии в тепловую.

Различают четыре степени ожогов: I - покраснение кожи; II - образование пузырей; III - омертвение всей толщи кожи; IV - обугливание тканей. Тяжесть поражения организма обуславливается не степенью ожога, а площадью обожженной поверхности тела. Напряжение на предприятии составляет U=220/380 В.

Токовые ожоги возникают при напряжениях не выше 1-2 кВ и являются е большинстве случаев ожогами I и II степени; иногда бывают и тяжелые ожоги.

Для обеспечения безопасности работ в действующих электроустановках при частичном или полном снятии напряжения на рабочих местах выполняются следующие технические мероприятия: отключаются необходимые электроустановки или их части и принимаются меры, препятствующие подаче напряжения к мест работы; непосредственно для проверки отсутствия напряжения накладывается заземление на отключение токоведущих частей электроустановки; ограждается рабочее место и вывешиваются предостерегающие и разрешающие плакаты.

Помещения без повышенной опасности - это сухие, беспыльные помещения с нормальной температурой воздуха и с изолирующими (например, деревянными) полами.

Повышение электробезопасности в установках достигается применением систем защитного заземления, зануления, защитного отключения и других средств и методов защиты, в том числе знаков безопасности и предупредительных плакатов и надписей.

Страницы: 1, 2, 3


© 2010 САЙТ РЕФЕРАТОВ