бесплано рефераты

Разделы

рефераты   Главная
рефераты   Искусство и культура
рефераты   Кибернетика
рефераты   Метрология
рефераты   Микроэкономика
рефераты   Мировая экономика МЭО
рефераты   РЦБ ценные бумаги
рефераты   САПР
рефераты   ТГП
рефераты   Теория вероятностей
рефераты   ТММ
рефераты   Автомобиль и дорога
рефераты   Компьютерные сети
рефераты   Конституционное право
      зарубежныйх стран
рефераты   Конституционное право
      России
рефераты   Краткое содержание
      произведений
рефераты   Криминалистика и
      криминология
рефераты   Военное дело и
      гражданская оборона
рефераты   География и экономическая
      география
рефераты   Геология гидрология и
      геодезия
рефераты   Спорт и туризм
рефераты   Рефераты Физика
рефераты   Физкультура и спорт
рефераты   Философия
рефераты   Финансы
рефераты   Фотография
рефераты   Музыка
рефераты   Авиация и космонавтика
рефераты   Наука и техника
рефераты   Кулинария
рефераты   Культурология
рефераты   Краеведение и этнография
рефераты   Религия и мифология
рефераты   Медицина
рефераты   Сексология
рефераты   Информатика
      программирование
 
 
 

Построение математических моделей

Решаем систему уравнений применяя метод Крамера.

    

  

    

Степенная модель множественной регрессии имеет вид:

В степенной функции коэффициенты при факторах являются коэффициентами эластичности. Коэффициент эластичности показывает на сколько процентов измениться в среднем значение результативного признака у, если один из факторов увеличить на 1 % при неизменном значении других факторов.

Если объем капиталовложений увеличить на 1%, то выручка предприятия увеличиться в среднем на 0,897% при неизменных размерах основных производственных фондов.

Если основные производственные фонды увеличить на 1%, то выручка предприятия уменьшиться на 0,226% при неизменных капиталовложениях.

5.  РАССЧИТАЕМ:

коэффициент множественной корреляции:

Связь выручки предприятия с объемом капиталовложений и основными производственными фондами тесная.

Таблица 13

Вспомогательные вычисления для нахождения коэффициента множественной корреляции, коэффициента детерминации, ср.относ.ошибки аппроксимации степенной модели множественной регрессии

Y

X1

X2

Y расч.

(Y-Yрасч.)2

(Y-Yср)2

A
3,0 1,1 0,4 2,978 0,000 0,020 0,007
2,9 1,1 0,4 2,978 0,006 0,058 0,027
3,0 1,2 0,7 2,838 0,026 0,020 0,054
3,1 1,4 0,9 3,079 0,000 0,002 0,007
3,2 1,4 0,9 3,079 0,015 0,004 0,038
2,8 1,4 0,8 3,162 0,131 0,116 0,129
2,9 1,3 0,8 2,959 0,003 0,058 0,020
3,4 1,6 1,1 3,317 0,007 0,068 0,024
3,5 1,3 0,4 3,460 0,002 0,130 0,012
3,6 1,4 0,5 3,516 0,007 0,212 0,023
31,4 13,2 6,9 0,198 0,684 0,342

коэффициент детерминации:

71,06% изменения выручки предприятия в степенной модели обусловлено изменением объема капиталовложений и основных производственных фондов, на 28,94 % - влиянием факторов, не включенных в модель.

F – критерий Фишера

Проверим значимость уравнения

Табличное значение F – критерия при уровне значимости α = 0,05 и числе степеней свободы d.f.1 = k = 2, числе степеней свободы d.f.2 = (n – k – 1) = (10 – 2 – 1) = 7 составит 4,74.

Так как Fрасч. = 8,592 > Fтабл. = 4.74, то уравнение степенной регрессии в целом можно считать статистически значимым.

среднюю относительную ошибку аппроксимации

В среднем в степенной модели расчетные значения отличаются от фактических на 3,42 %. Ошибка небольшая, модель можно считать точной.

6.  СОСТАВИМ СВОДНУЮ ТАБЛИЦУ ВЫЧИСЛЕНИЙ (табл. 14)

Таблица 14

Параметры Модель
линейная степенная

 

Коэффициент множественной

корреляции

0,8235 0,8429

Коэффициент

детерминации

0,6782 0,7106

F – критерий

Фишера

7,375 8,592

Средняя

относительная ошибка

аппроксимации, %

3,53 3,42

В целом модели имеют примерно одинаковые характеристики. Но лучшей считается степенная модель, т.к значение коэффициента корреляции, индекса детерминации, F – критерия Фишера немного больше, а средняя относительная ошибка аппроксимации немного меньше, чем у линейной модели.

7.  НАЙДЕМ ЧАСТНЫЕ КОЭФФИЦИЕНТЫ ЭЛАСТИЧНОСТИ И β – КОЭФФИЦИЕНТЫ

Для нахождения частных коэффициентов эластичности составим частные уравнения регрессии, т.е. уравнения регрессии, которые связывают результативный признак с соответствующим фактором х при закреплении других учитываемых во множественной регрессии на среднем уровне.

    и т.д.

Результаты расчетов представлены в таблице 15.


Таблица 15

Вспомогательная таблица для вычисления частных коэффициентов эластичности

Y X1 X2 Э(ух1) Э(ух2)
3,0 1,1 0,4 0,524 -0,135
2,9 1,1 0,4 0,524 -0,135
3,0 1,2 0,7 0,545 -0,262
3,1 1,4 0,9 0,583 -0,364
3,2 1,4 0,9 0,583 -0,364
2,8 1,4 0,8 0,583 -0,311
2,9 1,3 0,8 0,565 -0,311
3,4 1,6 1,1 0,615 -0,484
3,5 1,3 0,4 0,565 -0,135
3,6 1,4 0,5 0,583 -0,174

Бета коэффициент рассчитываем по формуле:

 - среднее квадратическое отклонение.

Необходимые вычисления для расчета СКО представлены в таблице 9.

    

Если объем капиталовложений увеличить на величину своего СКО, т.е. 0,147 млн. руб., то выручка предприятия увеличится на 1,302 величины своего СКО, т.е. на 1,302 * 0,262 = 0,341 млн. руб.

Если основные производственные фонды увеличить на величину своего СКО, т.е. на 0,239 млн. руб., то выручка предприятия уменьшится на 1,068 своего СКО, т.е. на 1,068 * 0,262 = 0,280 млн. руб.

8.  ПО ЛИНЕЙНОЙ МОДЕЛИ РЕГРЕССИИ СДЕЛАЕМ ПРОГНОЗ НА СЛЕДУЮЩИЕ ДВА ГОДА показателя у (выручка), в зависимости от х1 (объема капиталовложений) и х2 (основных производственных фондов).

Прогнозные значения факторов можно получить, используя метод прогнозирования с помощью среднего абсолютного прироста:

,

где  - средний абсолютный прирост, рассчитываемый по формуле:

;

k – период упреждения;

n – количество наблюдений.

, тогда

Х1, 11 = 1,4 + 1 ∙ 0,0333 = 1,4333 (млн.руб.)

Х1, 12 = 1,4 + 2 ∙ 0,0333 = 1,4667(млн.руб.)

Х2, 11 = 0,5 + 1 ∙ 0,0111 = 0,5111

Х2, 12 = 0,5 + 2 ∙0,0111 = 0,5222

Составляем вектор прогнозных значений факторов:

       .

Вычислим точечные прогнозы поведения выручки предприятия на моменты времени t = 11 и t = 12. Для этого подставим прогнозные значения факторов в уравнение регрессии.

 (млн. руб.)

 (млн. руб.)

Для получения интервального прогноза  рассчитываем доверительные интервалы, используя величину отклонения от линии регрессии (U):

,

         

Операции с матрицами осуществим в среде Excel с помощью встроенных математических функций МУНОЖ и МОБР.

      

Среднее квадратическое отклонение расчетных значений от фактических:

Коэффициент Стьюдента tα для m = 10 – 2 – 1 = 7 степеней свободы и уровня значимости α = 0,05 равен 2,36.

U(11) = 0,1773 ∙ 2.36 ∙ 0,61610,5 = 0,329

U(11) = 0,1773 ∙ 2.36 ∙ 0.74810,5 = 0,362

Результаты вычислений представим в виде таблицы.

Таблица 16

Шаг

Точечный прогноз,

млн. руб.

Нижняя граница,

млн. руб.

Верхняя граница,

млн. руб.

11 3,6121 3,2829 3,9412
12 3,6763 3,3136 4,0390

Список литературы:

1.  Доугерти К. Введение в эконометрику. – М.: Инфра – М, 2001. – 402 с.

2.  Катышев П. К., Пересецкий А. А. Сборник задач к начальному курсу эконометрики. – М.: Дело, 1999. – 72 с.

3.  Практикум по эконометрике: Учеб. пособие; Под ред. И. И. Елисеевой. – М.: Финансы и статистика, 2001. – 192 с.

4.  Тутыгин А.Г., Амбросевич М.А., Третьяков В.И. Эконометрика. Краткий курс лекций. Учебное пособие. – М.-Архангельск, Издательский дом «Юпитер», 2004. – 54 с.

5.  Эконометрика: Учеб. пособие; Под ред. И. И. Елисеевой. – М.: Финансы и статистика, 2001. –245 с.


Страницы: 1, 2, 3, 4, 5


© 2010 САЙТ РЕФЕРАТОВ