бесплано рефераты

Разделы

рефераты   Главная
рефераты   Искусство и культура
рефераты   Кибернетика
рефераты   Метрология
рефераты   Микроэкономика
рефераты   Мировая экономика МЭО
рефераты   РЦБ ценные бумаги
рефераты   САПР
рефераты   ТГП
рефераты   Теория вероятностей
рефераты   ТММ
рефераты   Автомобиль и дорога
рефераты   Компьютерные сети
рефераты   Конституционное право
      зарубежныйх стран
рефераты   Конституционное право
      России
рефераты   Краткое содержание
      произведений
рефераты   Криминалистика и
      криминология
рефераты   Военное дело и
      гражданская оборона
рефераты   География и экономическая
      география
рефераты   Геология гидрология и
      геодезия
рефераты   Спорт и туризм
рефераты   Рефераты Физика
рефераты   Физкультура и спорт
рефераты   Философия
рефераты   Финансы
рефераты   Фотография
рефераты   Музыка
рефераты   Авиация и космонавтика
рефераты   Наука и техника
рефераты   Кулинария
рефераты   Культурология
рефераты   Краеведение и этнография
рефераты   Религия и мифология
рефераты   Медицина
рефераты   Сексология
рефераты   Информатика
      программирование
 
 
 

Разработка программы определительных испытаний

Для заполнения колонки Е выделим ячейки Е25:Е34 и воспользуемся функцией ЧАСТОТА, указав массив статистических данных и массив правых границ интервалов: { = ЧАСТОТА (А1:F10; C25:C34)}

Одновременным нажатием клавиш заполним остальные выделенные ячейки.

Колонку F заполним с помощью формулы:

F25 = E25/$A$22, с последующим копированием в ячейки F26:F34

Колонку G заполним с помощью формулы:

G25 = E25, G26 = G25 + E26 с последующим копированием в ячейки G27:G34

Колонку H заполним с помощью формулы:

H25 = G25/$A$22, с последующим копированием в ячейки H26:H34

Данные, собранные в таблице 10 наглядно представим с помощью:

полигон частот – графическая зависимость частот (относительных частот) от середины интервалов (рисунок 9).

Рисунок 9 – Полигон частот

кумуляты частот – графическая зависимость накопленных частот (накопленных относительных частот) от середины интервалов (рисунок 10).


Рисунок 10 – Кумуляты частот

2.4 Подбор подходящего закона распределения вероятностей

Далее рассмотрим некоторые известные распределения, такие как равномерное, нормальное и гамма-распределение, с целью проверки подчиняется ли наше распределение вероятностей заданному.

Проверка на соответствие данных испытаний распределению производится перебором трех распределений, указанных выше, включая заданное, а именно равномерное.

Чтобы иметь полную информацию о распределении случайной величины, надо знать параметры этого распределения. Таким образом, математическое ожидание случайной величины t равно выборочной средней, а среднее квадратическое отклонение случайной величины t – выборочному среднему квадратическому отклонению. Указанные характеристики находятся в ячейках F12 и F14 соответственно. Поместим эти значения в ячейки А2 и В2 соответственно (таблица 11).

Определим параметры равномерного (a и b), нормального (m – математическое отклонение и σ – среднее квадратическое отклонение), экспоненциального и гамма-распределения (α и β) в соответствии с формулами:

, , , ,

B5 = 1/A2;

B8 = A2-В2*КОРЕНЬ(3);

B9 = А2+В2*КОРЕНЬ(3);

B12 = (A2/B2)^2;

B13 = B2^2/A2;

B16 = (A2/B2)^2;

B17 = B2^2/A2.

Таблица 11 – Значения плотностей распределения

A

B

C

D

E

F

1

Матем. ожидание Ср. кв. отклон.

2

100,0892 10,0367

3

4

Параметры экспоненциального распределения

5

λ 0,0100

6

7

Параметры равномерного распределения

8

а

82,7050

9

b

117,4735

10

11

Параметры нормального распределения

12

m

100,0893

13

σ 10,0367

14

15

Параметры гамма-распределения

16

α 99,4454

17

β 1,0065

18

19

Середина Плотность относит. частот Плотность экспоненц. распред. Плотность нормал. распред. Плотность гамма- распред. Плотность равномер. распред.

20

82 0,0223 0,0044 0,0078 0,0076 0

21

86 0,0089 0,0042 0,0148 0,0156 0,0287

22

90 0,0267 0,0041 0,0240 0,0257 0,0287

23

94 0,0401 0,0039 0,0331 0,0349 0,0287

24

98 0,0312 0,0038 0,0389 0,0397 0,0287

25

102 0,0312 0,0036 0,0390 0,0383 0,0287

26

106 0,0446 0,0035 0,0334 0,0317 0,0287

27

110 0,0178 0,0033 0,0244 0,0229 0,0287

28

114 0,0044 0,0032 0,0152 0,0145 0,0287

29

118 0,0223 0,0031 0,0081 0,0081 0

Страницы: 1, 2, 3, 4, 5, 6


© 2010 САЙТ РЕФЕРАТОВ